
g03 – Multivariate Methods g03cac

nag mv factor (g03cac)

1. Purpose

nag mv factor (g03cac) computes the maximum likelihood estimates of the parameters of a factor
analysis model. Either the data matrix or a correlation/covariance matrix may be input. Factor
loadings, communalities and residual correlations are returned.

2. Specification

#include <nag.h>
#include <nagg03.h>

void nag_mv_factor(Nag_FacMat matrix, Integer n, Integer m,
double x[], Integer tdx, Integer nvar, Integer isx[],
Integer nfac, double wt[], double e[], double stat[],
double com[], double psi[], double res[],
double fl[], Integer tdfl, Nag_E04_Opt *options,
double eps, NagError *fail)

3. Description

Let p variables, x1, x2, . . . , xp, with variance-covariance matrix Σ be observed. The aim of factor
analysis is to account for the covariances in these p variables in terms of a smaller number, k,
of hypothetical variables, or factors, f1, f2, . . . , fk. These are assumed to be independent and to
have unit variance. The relationship between the observed variables and the factors is given by the
model:

xi =
k∑

j=1

λijfj + ei i = 1, 2, . . . , p

where λij , for i = 1, 2, . . . , p; j = 1, 2, . . . , k, are the factor loadings and ei, for i = 1, 2, . . . , p, are
independent random variables with variances ψi, for i = 1, 2, . . . , p. The ψi represent the unique
component of the variation of each observed variable. The proportion of variation for each variable
accounted for by the factors is known as the communality. For this routine it is assumed that both
the k factors and the ei’s follow independent Normal distributions.

The model for the variance-covariance matrix, Σ, can be written as:

Σ = ΛΛT + Ψ (1)

where Λ is the matrix of the factor loadings, λij , and Ψ is a diagonal matrix of unique variances,
ψi, for i = 1, 2, . . . , p.

The estimation of the parameters of the model, Λ and Ψ, by maximum likelihood is described by
Lawley and Maxwell (1971). The log likelihood is:

− 1
2
(n − 1) log(|Σ|) − 1

2
(n − 1)trace(SΣ−1) + constant,

where n is the number of observations, S is the sample variance-covariance matrix or, if weights
are used, S is the weighted sample variance-covariance matrix and n is the effective number of
observations, that is, the sum of the weights. The constant is independent of the parameters of the
model. A two stage maximization is employed. It makes use of the function F (Ψ), which is, up
to a constant, −2/(n − 1) times the log likelihood maximized over Λ. This is then minimized with
respect to Ψ to give the estimates, Ψ̂, of Ψ. The function F (Ψ) can be written as:

F (Ψ) =
p∑

j=k+1

(θj − log θj) − (p − k),
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where values θj , for j = 1, 2, . . . , p are the eigenvalues of the matrix:

S∗ = Ψ−1/2SΨ−1/2.

The estimates Λ̂, of Λ, are then given by scaling the eigenvectors of S∗, which are denoted by V :

Λ̂ = Ψ1/2V (Θ − I)1/2.

where Θ is the diagonal matrix with elements θi, and I is the identity matrix.

The minimization of F (Ψ) is performed using a modified Newton algorithm. The computation
of the Hessian matrix is described by Clarke (1970). However, instead of using the eigenvalue
decomposition of the matrix S∗ as described above, the singular value decomposition of the matrix
RΨ−1/2 is used, where R is obtained either from the QR decomposition of the (scaled) mean-
centred data matrix or from the Cholesky decomposition of the correlation/covariance matrix. The
routine ensures that the values of ψi are greater than a given small positive quantity, δ, so that the
communality is always less than one. This avoids the so called Heywood cases.

In addition to the values of Λ, Ψ and the communalities, nag mv factor (g03cac) returns the residual
correlations, i.e., the off-diagonal elements of C − (ΛΛT + Ψ) where C is the sample correlation
matrix. nag mv factor (g03cac) also returns the test statistic:

χ2 = [n − 1 − (2p + 5)/6 − 2k/3]F (Ψ̂)

which can be used to test the goodness of fit of the model (1), see Lawley and Maxwell (1971) and
Morrison (1967).

4. Parameters

matrix
Input: selects the type of matrix on which factor analysis is to be performed.

If matrix = Nag DataCorr (Data input), then the data matrix will be input in x and
factor analysis will be computed for the correlation matrix.

If matrix = Nag DataCovar, then the data matrix will be input in x and factor analysis
will be computed for the covariance matrix, i.e., the results are scaled as described in
Section 6.

If matrix = Nag MatCorr Covar, then the correlation/variance-covariance matrix will
be input in x and factor analysis computed for this matrix.

Constraint: matrix = Nag DataCorr, Nag DataCovar or Nag MatCorr Covar.

n
Input: if matrix = Nag DataCorr or Nag DataCovar the number of observations in the data
array x.
If matrix = Nag MatCorr Covar the (effective) number of observations used in computing
the (possibly weighted) correlation/variance-covariance matrix input in x.
Constraint: n > nvar.

m
Input: the number of variables in the data/correlation/variance-covariance matrix.
Constraint: m ≥ nvar.

x[dim1][tdx]
Input: the input matrix. If matrix = Nag DataCorr or Nag DataCovar, then dim1 ≥ n and
x must contain the data matrix, i.e., x[i − 1][j − 1] must contain the ith observation for the
jth variable, for i = 1, 2, . . . , n; j = 1, 2, . . . ,m.
If matrix = Nag MatCorr Covar then dim1 ≥ m and x must contain the correlation or
variance-covariance matrix. Only the upper triangular part is required.
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tdx
Input: the last dimension of the array x as declared in the calling program.
Constraint: tdx ≥ m.

nvar
Input: the number of variables in the factor analysis, p.
Constraint: nvar ≥ 2.

isx[m]
Input: isx[j − 1] indicates whether or not the jth variable is to be included in the factor
analysis.

If isx[j − 1] ≥ 1, then the variable represented by the jth column of x is included in the
analysis; otherwise it is excluded, for j = 1, 2, . . . ,m.

Constraint: isx[j − 1] > 0 for nvar values of j.

nfac
Input: the number of factors, k.
Constraint: 1 ≤ nfac ≤ nvar.

wt[n]
Input: if matrix = Nag DataCorr or Nag DataCovar then the elements of wt must contain
the weights to be used in the factor analysis. The effective number of observations is the sum
of the weights. If wt[i − 1] = 0.0 then the ith observation is not included in the analysis.

If matrix = Nag MatCorr Covar or wt is set to the null pointer NULL, i.e., (double *)0,
then wt is not referenced and the effective number of observations is n.
Constraint: if wt is referenced, then wt[i − 1] ≥ 0 for i = 1, 2, . . . , n, and the sum of the
weights > nvar.

e[nvar]
Output: the eigenvalues θi, for i = 1, 2, . . . , p.

stat[4]
Output: the test statistics.
stat[0] contains the value F (Ψ̂).
stat[1] contains the test statistic, χ2.
stat[2] contains the degrees of freedom associated with the test statistic.
stat[3] contains the significance level.

com[nvar]
Output: the communalities.

psi[nvar]
Output: the estimates of ψi, for i = 1, 2, . . . , p.

res[nvar∗(nvar−1)/2]
Output: the residual correlations. The residual correlation for the ith and jth variables is
stored in res[(j − 1)(j − 2)/2 + i − 1], i < j.

fl[nvar][tdfl]
Output: the factor loadings. fl[i − 1][j − 1] contains λij , for i = 1, 2, . . . , p; j = 1, 2, . . . , k.

tdfl
Input: the last dimension of the array fl as declared in the calling program.
Constraint: tdfl ≥ nfac.

options
Input/Output: a pointer to a structure of type Nag E04 Opt whose members are optional
parameters. These structure members offer the means of adjusting some of the parameter
values of the algorithm.

If the optional parameters are not required the NAG defined null pointer, E04 DEFAULT, can
be used in the function call.
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eps
Input: A lower bound for the value of Ψi.
Constraint: machine precision ≤ eps < 1.0.

fail
The NAG error parameter, see the Essential Introduction to the NAG C Library.

5. Error Indications and Warnings

NE BAD PARAM
On entry, parameter matrix had an illegal value.

NE INT ARG LT
On entry, nfac must not be less than 1: nfac = 〈value〉.
On entry, nvar must not be less than 2: nvar = 〈value〉.

NE 2 INT ARG LT
On entry, m = 〈value〉 while nvar = 〈value〉.
These parameters must satisfy m ≥ nvar.
On entry, tdx = 〈value〉 while m = 〈value〉.
These parameters must satisfy tdx ≥ m.
On entry, tdfl = 〈value〉 while nfac = 〈value〉.
These parameters must satisfy tdfl ≥ nfac.

NE 2 INT ARG LE
On entry, n = 〈value〉 while nvar = 〈value〉.
These parameters must satisfy n > nvar.

NE 2 INT ARG GT
On entry, nfac = 〈value〉 while nvar = 〈value〉.
These parameters must satisfy nfac ≤ nvar.

NE INVALID REAL RANGE EF
Value 〈value〉 given to eps is not valid.
Correct range is machine precision ≤ eps < 1.0.

NE NEG WEIGHT ELEMENT
On entry, wt[〈value〉] = 〈value〉.
Constraint: When referenced, all elements of wt must be non-negative.

NE VAR INCL INDICATED
The number of variables, nvar in the analysis = 〈value〉, while number of variables included
in the analysis via array isx = 〈value〉.
Constraint: these two numbers must be the same.

NE OBSERV LT VAR
With weighted data, the effective number of observations given by the sum of
weights = 〈value〉, while the number of variables included in the analysis, nvar = 〈value〉.
Constraint: effective number of observations > nvar + 1.

NE SVD NOT CONV
A singular value decomposition has failed to converge.
This is a very unlikely error exit.

NW COND MIN
The conditions for a minimum have not all been satisfied but a lower
point could not be found.
Note that in this case all the results are computed.

NW TOO MANY ITER
The maximum number of iterations, 〈value〉, have been performed.

NE MAT RANK
On entry, matrix = Nag DataCorr or matrix = Nag DataCovar and the data matrix is not
of full column rank, or matrix = Nag MatCorr Covar and the input correlation/variance-
covariance matrix is not positive-definite.
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This exit may also be caused by two of the eigenvalues of S∗ being equal; this is rare (see
Lawley and Maxwell (1971)) and may be due to the data/correlation matrix being almost
singular.

NE ALLOC FAIL
Memory allocation failed.

NE INTERNAL ERROR
An internal error has occurred in this function.
Check the function call and any array sizes. If the call is correct then please consult NAG for
assistance.

Additional error messages are output if the optimisation fails to converge or if the options are set
incorrectly.

6. Further Comments

The factor loadings may be orthogonally rotated by using nag mv orthomax (g03bac) and factor
score coefficients can be computed using nag mv fac score (g03ccc). The maximum likelihood
estimators are invariant to a change in scale. This means that the results obtained will be the
same (up to a scaling factor) if either the correlation matrix or the variance-covariance matrix is
used. As the correlation matrix ensures that all values of ψi are between 0 and 1 it will lead to a
more efficient optimization. In the situation when the data matrix is input the results are always
computed for the correlation matrix and then scaled if the results for the covariance matrix are
required. When the user inputs the covariance/correlation matrix the input matrix itself is used
and so the user is advised to input the correlation matrix rather than the covariance matrix.

6.2. References

Clark M R B (1970) A rapidly convergent method for maximum likelihood factor analysis British
J. Math. Statist. Psych..

Lawley D N and Maxwell A E (1971) Factor Analysis as a Statistical Method Butterworths (2nd
Edition).

Hammarling S (1985) The singular value decomposition in multivariate statistics SIGNUM 20(3)
2–25.

Morrison D F (1967) Multivariate Statistical Methods McGraw-Hill.

7. See Also

None.
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