
Dr. Dobb's Journal, March 2002, pp. 28-34.

C99 & Numeric Computing
| Scienti�c Computing in Real and Complex Domains

Harry H. Cheng

1 Introduction

Although C is a powerful systems programming language that can deliver much the same control
over devices as assembly language, it has de�ciencies when it comes to scienti�c and engineering
applications that require extensive numerical computing. While some numerical computing de�-
ciencies in the original K&R C [1] were addressed in C90 [2], many limitations still remain. C99,
rati�ed as the ANSI/ISO C Standard (ISO/IEC IS 9899) [3], is a milestone in C's evolution into a
viable programming language for scienti�c and numerical computing. Among other features, C99
supports IEEE oating-point arithmetic, complex numbers, and variable-length arrays (VLAs) for
numerical programming. Complex numbers and VLAs were added mainly based on the prior art of
implementation of Ch from SoftIntegration (http://www.softintegration.com) [4], SCC from Cray
Research, (http://www.cray.com), gcc from Free Software Foundation (http://www.gnu.org), and
some others.

Although C99 support is limited, more compilers are adding these new features. For example,
Comeau C 4.2.45.2 from Comeau Computing (http://www.comeaucomputing.com/features.html#c99)

supports VLAs without complex numbers. The C compiler from Hewlett-Packard supports com-
plex numbers. GCC 2.95 and later (http://gcc.gnu.org/c99status.html) provides limited support of
VLAs and complex numbers. The Dinkum C99 Library from Dinkumware
(http://www.dinkumware.com/) is a complete library for C99.

Complex numbers are handled as built-in data types in C, Unlike C, complex numbers are
treated as classes in C++. For example, Forte C++ 6 Update 2 (formerly Sun Visual WorkShop
C++; http://www.sun.com/forte/cplusplus/index.html) provide some support for complex arith-
metic. There is no provision for IEEE oating-point arithmetic for both real numbers and complex
numbers in C++.

In this article, I examine what's involved with C99 compliance by looking at Ch, a C virtual
machine produced by SoftIntegration (http://www.softintegration.com/). Ch has provisions for
consistent handling of numerical numbers in the entire real and complex domains with VLAs under
the framework of IEEE oating-point arithmetic. As a superset of C interpreter, Ch also supports
classes in C++. In particular, I focus here on the design and implementation of IEEE oating-
point arithmetic and complex numbers. Ch was designed for script computing in the framework of
C/C++. C or C++ conforming programs with complex numbers will run in this virtual machine
without modi�cation. I've tested all C programs presented here in both Ch and GCC 2.96, and
C++ programs in Ch and G++ 2.95.

2 Computing in the Entire Real Domain

The IEEE 754 standard [5] for binary oating-point arithmetic is signi�cant for consistent oating-
point arithmetic with respect to real numbers. The IEEE 754 standard distinguishes +0:0 from

1

Dr. Dobb's Journal, March 2002, pp. 28-34.

�0:0, which introduces an extra complexity for programming. Another important feature of the
IEEE 754 standard is the internal representations for the mathematical in�nities and invalid value.
The mathematical in�nity1 is represented by the symbol of Inf. A mathematically indeterminate
or an unde�ned value such as division of zero by zero is represented by NaN, which stands for
Not-a-Number. Many computer hardware support signed zeros, in�nity, and NaN. Information
about low-level and limited high-level instruction sets provided by hardware vendors may not be
relevant to the application programmer and most features of a �nal system depend on the software
implementation. Even for IEEE machines, if there is no provision for propagating the sign of zeros,
in�nity, and NaN in a consistent and useful manner through the software support, they will have
to be programmed as if zeros were unsigned, without in�nity and NaN. Based on IEEE machines,
some vendors provide software support for the IEEE 754 standard through libraries. However,
these special values in libraries are not transparent to the programmer. Although the application
of symbols such as Inf and NaN can be found in some mathematical software packages and libraries,
their handling of these special numbers is often full of aws. It is in these grey areas that the IEEE
754 standard is not supported in many hardware and software systems.

To make the power of the IEEE 754 standard easily available to the programmer, the oating-
point numbers of INFINITY, �INFINITY, NAN and signed zeros �0.0 and 0.0 are introduced
in C99. In Ch, INFINITY and NAN corresponding to built-in metanumbers Inf and NaN are
de�ned as macros in header �le math.h. For notational convenience and brevity, metanumbers
Inf and NaN will be used in the presentation in the rest of this article. These metanumbers are
transparent to the programmer. Signed zeros +0:0 and �0:0 in C99 behave like correctly signed
in�nitesimal quantities 0+ and 0�, whereas symbols Inf and �Inf correspond to mathematical
in�nities1 and �1, respectively. The IEEE 754 standard only addresses the arithmetic involving
these metanumbers. These metanumbers are extended in C99 to commonly used mathematical
functions in the spirit of the IEEE 754 standard. There are provisions for consistent handling of
metanumbers in I/O, arithmetic, relational and logic operations, and polymorphic mathematical
functions in the implementation of Ch [6]. An NaN is propagated consistently through subsequent
computations. Many believe that C99 made mistakes in handling some of mathematical functions.
For example, the values of function calls for hypot(Inf, NaN), hypot(-Inf, NaN), pow(1, NaN), and
pow(NaN, +/-0.0) are de�ned in C99 as Inf, Inf, 1.0, and 1.0, respectively. They are implemented
in Ch to return NaN because these functions are mathematically unde�ned for the arguments with
the above mentioned values.

C99 distinguishes �0:0 from 0:0 for real numbers. The metanumbers 0:0;�0:0, Inf, �Inf, and
NaN are very useful for scienti�c computing. For example, the function f(x) = e

1

x is not continu-
ous at the origin as shown in Figure 1. This discontinuity can be handled gracefully in C99. The
evaluation of the expression exp(1/0.0) will return Inf and exp(1=(�0:0)) gives 0.0, which corre-

sponds to mathematical expressions e
1

0+ and e
1

0
� or limx!0+ e

1

x and limx!0
�

e
1

x , respectively. In
addition, the evaluation of expressions exp(1.0/Inf) and exp(1.0/(�Inf)) will get the value of 1.0.
As another example, the function finite(x) recommended by the IEEE 754 standard is equivalent
to the expression -Inf < x && x < Inf, where x can be a oat/double variable or expression. If x
is a oat, -Inf < x && x < Inf is equivalent to -FLT MAX <= x && x <= FLT MAX; if x is a dou-
ble, -Inf < x && x < Inf is equivalent to -DBL MAX <= x && x <= DBL MAX; The mathematical
statement \if �1 < value <=1; then y becomes1" can be easily programmed as follows

if(-Inf < value && value <= Inf) y = Inf;

However, a computer can only evaluate an expression step by step. Although the metanumbers
are limits of the oating-point numbers, they cannot replace mathematical analysis. For example,

2

Dr. Dobb's Journal, March 2002, pp. 28-34.

Figure 1: Function f(x) = e
1

x .

the natural number e equal to 2.718281828... is de�ned as the limit value of the expression

lim
x!1

�
1 +

1

x

�x
= e:

But, the value of the expression pow(1.0 + 1.0/Inf, Inf) is NaN. The evaluation of this expression
is carried out as follows:

�
1:0 +

1:0

Inf

�Inf
= (1:0 + 0:0)Inf = 1:0Inf = NaN

If the value FLT MAX instead of Inf is used in the above expression, the result is obtained by

�
1:0 +

1:0

FLT MAX

�FLT MAX

= (1:0 + 0:0)FLT MAX = 1:0FLT MAX = 1:0

Because metanumber NaN is unordered, a program involving relational operations should be
handled cautiously. For example, the expression x > y is not equivalent to !(x <= y) if either x
or y is a NaN. As another example, the following code fragment

if(x > 0.0)

function1();

else

function2();

is di�erent from the code fragment

3

Dr. Dobb's Journal, March 2002, pp. 28-34.

if(x <= 0.0)

function2();

else

function1();

The second if-statement should be written as if(x <= 0.0 || isnan(x)) in order to have the
same functionality for these two code fragments.

The metanumbers 0:0;�0:0, Inf, �Inf, and NaN are very useful for applications in engineering.
For example, the discontinuity at the origin can be expressed using signed zeros. The in�nity of
mechanical advantage at a toggling position for a four-bar linkage can be written as Inf. If there
exists no solution for output link corresponding to a given input link position of a four-bar linkage,
the solution can be represented symbolically as NaN, which will be described in detail later.

3 Computing in the Entire Complex Domain

Complex numbers z 2 C = f(x; y) j x; y 2Rg can be de�ned as ordered pairs

z = (x; y) (1)

with speci�c addition and multiplication rules. The real numbers x and y are called the real and
imaginary parts of z. If we identify the pair of (x; 0:0) as the real numbers. The real number R is
a subset of C, i.e., R = f(x; y) j x 2R; y = 0:0g and R � C. If a real number is considered either
as x or (x; 0:0) and let i denote the pure imaginary number (0; 1) with i � i = �1, complex numbers
can be mathematically represented as

z = x+ iy (2)

Complex number has wide applications in engineering and science. Due to its importance in
scienti�c programming, numerically oriented programming languages and software packages usu-
ally provide complex number support in one way or another. For example, FORTRAN has pro-
vided complex data type since its earliest days. Computations involving complex numbers can
be accomplished using a data structure in C90. However, programming with such a structure is
somewhat clumsy, because a corresponding function has to be invoked for each operation. Using
C++, classes for complex numbers can be created. By using operator and function overload-
ings, built-in operators and functions can be extended so as to also apply to the complex data
type. Therefore, the complex data type can be achieved. Such complex classes have been added
in the C++ standard. Without overloading features of classes, C99 supports complex numbers
with built-in data types. There are di�erences for complex numbers in C and C++. However, a
typical C or C++ program with complex numbers can run in Ch without any modi�cation. A
complex number z = (x; y) = rei� can be constructed by x+I*y, complex(x,y), polar(r,theta),
float complex(x,y), or double complex(x,y) in Ch. Complex numbers are supported in generic
polymorphic mathematical functions in Ch.

Most textbooks and software avoid issues related to the complex in�nity. Likewise, no other
general-purpose computer programming language has provisions for consistent handling of complex
in�nity. Primarily, there are two models for implementation of complex numbers under the frame-
work of the IEEE oating-point arithmetic. One is to follow the conventional mathematics, which
will be described later. The other is invented in informative Annex G in C99 with imaginary types.
In this model, all these metanumbers (+-Inf, x) (x,+-Inf), (+-Inf, +-0.0) (+-0.0, +-Inf), (+-Inf,
NaN), and (NaN, +-Inf) can represent a complex in�nity. The sign of zeros is honored. Not-a-
number is no longer not a number. NaN is essentially treated as any number. Non-conventional
numerical results are invented.

4

Dr. Dobb's Journal, March 2002, pp. 28-34.

There are major problems in this model.

� First, many results in Annex G are pure invention. they are mathematically incorrect accord-
ing to the conventional complex analysis. For example, it is a well known textbook example
in complex analysis that exp(ComplexInf) is unde�ned, because the complex in�nity can be
approached from di�erent directions, which lead to di�erent numerical results. But, Annex G
invented exp(-Inf, NaN)==(+-0,+-0), exp(Inf, NaN)==(+-Inf,NaN), exp(-Inf, Inf) == (+-
0,+-0), exp(Inf, Inf)==(Inf, NaN), etc. In this model, real and imaginary parts of a complex
number is treated as a whole in some cases. In other cases, they are treated as if they were
completely independent. For example, imag(complex(NaN, x)) will gives x.

� Second, it has to introduce a new data type of imaginary in the type system to achieve
the afore-mentioned non-conventional numerical results. In fact, three new data types oat
imaginary, double imaginary, and long double imaginary have to be added to the type system.
It is very expensive to add a type system to C. Many operators and type conversion rules
have to be overloaded internally, which will slow compilation and execution speed even for
programs without using imaginary types.

� Third, the new imaginary type is not orthogonal with other types. The set of imaginaries is
closed under addition but not multiplication, so it isn't a proper number system under the
�eld operations. They do not form a self-contained subspace. For example, the square root
of an imaginary does not return a pure imaginary. Very few if any real-world applications
use pure-imaginary numbers alone. Imaginaries are typically embedded in the whole complex
plane. Nevertheless, additional functions are needed to handle mathematical functions with
arguments of imaginary type.

� Forth, it complicates complex arithmetic operations and complex functions dramatically,
which will lead to ineÆciency of C for numerical computing.

� Fifth, this model will also shift the burden of keeping track of sign of zeros to users. It
is almost impossible to get the correct computing results without consulting a manual con-
stantly, especially for complex functions with multiple arguments. If the sign of zero is ignored
in complex numbers, a programmer can ignore the sign of zeros. If the sign is honored, a
programmer however has to worry about the sign of zeros.

Most importantly, many inventions such as exp(-Inf, NaN)==(+-0,+-0) in Annex G have no practi-
cal use in engineering and science. These inventions, against the conventional complex mathematical
analysis, are even harmful as shown in the example below.

double x, y, r;

double complex z;

double tolerance = DBL_EPSILON;

/* ... */

z = cexp(complex(x/y, sqrt(r));

if(cabs(z) < tolerance)

move_needle_one_inch_for_robot_brain_surgery();

else

error_handling_for_some_thing_wrong();

If it happens that the numerical values for x is any positive number such as 3.0, y is -0.0, and r
is NaN at a singularity point of a robot. The above code works �ne for implementation such as

5

Dr. Dobb's Journal, March 2002, pp. 28-34.

Figure 2: The Riemann sphere � and extended complex plane.

Ch based on an alternative complex model described in next paragraphs. Based on the invention
in Annex G, a patient's brain might be damaged. Propagating NaN to a valid, but erroneous,
numerical result according to Annex G has a serious consequence for applications in engineering
and science.

In short, Annex G is neither normative nor mandated for C99-conforming implementations.
Consequently, C99-conforming implementation of Ch uses a di�erent complex model in the spirit
of IEEE 754 oating-point arithmetic. This model follows the conventional complex analysis under
a Riemann sphere. In this model, there is only one complex in�nity (Inf, Inf)==ComplexInf in the
extended complex domain, one Complex-Not-a-Number (NaN, NaN)==ComplexNaN, and zero is
unsigned. This complex model is easy to implement and use.

In conventional complex analysis under a Riemann sphere, complex numbers can be represented
in the extended complex plane shown in Figure 2. In Figure 2, there is a one-to-one correspondence
between the points on the Riemann sphere � and the points on the extended complex plane C. The
point p on the surface of the sphere is determined by the intersection of the line through the point
z and the north pole N of the sphere. There is only one complex in�nity in the extended complex
plane. The north pole N corresponds to the point at in�nity.

Because of the �nite representation of oating-point numbers, complex numbers in Ch are
programmed in the extended �nite complex plane shown in Figure 3. Any complex or oat com-
plex values inside the ranges of jxj < FLT MAX and jyj < FLT MAX are representable in �nite
oating-point numbers. Variable x is used to represent the real part of a complex number and y
the imaginary part; FLT MAX, a prede�ned system constant in header �le oat.h, is the maximum
representable �nite oating-point number in the oat data type. For double complex, the boundary
for the extended �nite complex plane will be expanded from FLT MAX to DBL MAX. Outside
the extended �nite complex plane, a complex number is treated as a Complex-In�nity represented

6

Dr. Dobb's Journal, March 2002, pp. 28-34.

Figure 3: The unit sphere � and extended �nite complex plane.

as ComplexInf or complex(Inf,Inf) in Ch. The origin of the extended �nite complex plane is com-
plex(0.0, 0.0). In Ch, an unde�ned or a mathematically indeterminate complex number is denoted
as complex(NaN, NaN) or ComplexNaN, which stands for Complex-Not-a-Number. The special
complex numbers of ComplexInf and and ComplexNaN are referred to as complex metanumbers.
Because of the mathematical in�nities of �1, it becomes necessary to distinguish a positive zero
0:0 from a negative zero �0:0 for real numbers. Unlike the real line, along which real numbers can
approach the origin through the positive or negative numbers, the origin of the complex plane can
be reached in any direction in terms of the limit value of limr!0 re

i� where r is the modulus and �
is the phase of a complex number. Therefore, complex operations and complex functions in Ch do
not distinguish 0:0 from �0:0 for real and imaginary parts of complex numbers.

Under this complex model, the conventional numerical results such as ComplexInf+ComplexInf
== ComplexNaN, ComplexInf-ComplexInf == ComplexNaN, ComplexInf*ComplexInf == Com-
plexInf, and exp(ComplexInf) == ComplexNaN can be obtained. The expression (1i) � (1i) is
equivalent to ComplexInf*ComplexInf with the result of ComplexInf.

4 Application Examples

In this section, we will describe how metanumbers and complex numbers can be used in applications.
A second order polynomial equation

ax2 + bx+ c = 0 (3)

can be solved by the formula

x =
�b�p

b2 � 4ac

2a
: (4)

7

Dr. Dobb's Journal, March 2002, pp. 28-34.

#include <stdio.h>

#include <math.h>

int main() {

double a = 1, b = -5, c = 6, x1, x2;

x1 = (-b +sqrt(b*b-4*a*c))/(2*a);

x2 = (-b -sqrt(b*b-4*a*c))/(2*a);

printf("x1 = %f\n", x1);

printf("x2 = %f\n", x2);

}

Program 1: C program for solving x2 � 5x+ 6 = 0:

#include <stdio.h>

#include <math.h>

int main() {

double a = 1, b = -4, c = 13, x1, x2;

x1 = (-b +sqrt(b*b-4*a*c))/(2*a);

x2 = (-b -sqrt(b*b-4*a*c))/(2*a);

printf("x1 = %f\n", x1);

printf("x2 = %f\n", x2);

}

Program 2: C program for solving x2 � 4x+ 13 = 0 in the real domain.

According to the above formula, two solutions of x1 = 2 and x2 = 3 for equation

x2 � 5x+ 6 = 0 (5)

can be obtained by Program 1. Executing Program 1 gives the following output:

x1 = 3.000000

x2 = 2.000000

For equation

x2 � 4x+ 13 = 0; (6)

two complex solutions of x1 = 2 + i3 and x2 = 2� i3 cannot be solved in the real domain. These
complex numbers cannot be represented in double data type. In the domain of real numbers, the
values of these solutions are Not-a-Number. Executing Program 2 gives the following output.

x1 = NaN

x2 = NaN

However, using complex numbers, equation (5) can be solved by a C99 conforming Program 3.
Executing Program 3 gives the following output.

x1 = complex(2.000000,3.000000)

x2 = complex(2.000000,-3.000000)

8

Dr. Dobb's Journal, March 2002, pp. 28-34.

#include <stdio.h>

#include <math.h>

#include <complex.h>

int main() {

double complex a = 1, b = -4, c = 13, x1, x2;

x1 = (-b +csqrt(b*b-4*a*c))/(2*a);

x2 = (-b -csqrt(b*b-4*a*c))/(2*a);

printf("x1 = complex(%f,%f)\n", creal(x1), cimag(x1));

printf("x2 = complex(%f,%f)\n", creal(x2), cimag(x2));

}

Program 3: C program for solving x2 � 4x+ 13 = 0 in the complex domain.

#include <stdio.h>

#include <math.h>

#include <complex.h>

int main() {

double_complex a = 1, b = -4, c = 13, x1, x2;

x1 = (-b +sqrt(b*b-4*a*c))/(2*a);

x2 = (-b -sqrt(b*b-4*a*c))/(2*a);

printf("x1 = complex(%f,%f)\n", real(x1), imag(x1));

printf("x2 = complex(%f,%f)\n", real(x2), imag(x2));

}

Program 4: C++ program for solving x2 � 4x+ 13 = 0 in the complex domain.

#include <stdio.h>

#include <math.h>

#ifndef INFINITY

#define INFINITY (1.0/0.0)

#endif

int main() {

double a = 1, b = INFINITY, c = 13, x1, x2;

x1 = (-b +sqrt(b*b-4*a*c))/(2*a);

x2 = (-b -sqrt(b*b-4*a*c))/(2*a);

printf("x1 = %f\n", x1);

printf("x2 = %f\n", x2);

}

Program 5: C program for solving a2 + bx+ c = 0 with b equal to 1 in the real domain.

9

Dr. Dobb's Journal, March 2002, pp. 28-34.

#include <stdio.h>

#include <math.h>

#include <complex.h>

#ifndef INFINITY

#define INFINITY (1.0/0.0)

#endif

int main() {

double complex a = 1, b = INFINITY, c = 13, x1, x2;

x1 = (-b +csqrt(b*b-4*a*c))/(2*a);

x2 = (-b -csqrt(b*b-4*a*c))/(2*a);

printf("x1 = complex(%f,%f)\n", creal(x1), cimag(x1));

printf("x2 = complex(%f,%f)\n", creal(x2), cimag(x2));

}

Program 6: C program for solving a2 + bx+ c = 0 with b equal to 1 in the complex domain.

The same problem can be solved by a C++ conforming program shown in Program 4 with the same
output as Program 3. Note that complex type is declared with the type speci�er double complex

in C++ instead of double complex in C99. Real and imaginary parts of a complex number are
obtained by functions real() and imag() in C++, instead of creal() and cimag() in C99.

If the coeÆcient b in equation (3) is 1 which can be represented as INFINITY in C99, the
solution can be calculated by Program 5 with the output given as follows:

x1 = NaN

x2 = -Inf

Note that the macro INFINITY in C99 for 1 is not supported in gcc, it is obtained conveniently in
the program by dividing 1.0 by 0. If complex numbers are used in the calculation by Program 6,
which is C99 conforming, the output becomes

x1 = complex(NaN,NaN)

x2 = complex(NaN,NaN)

5 Conclusions

C99 makes the power of the IEEE 754 oating-point arithmetics easily available to the programmer
for applications in the real domain. Complex numbers are generalization of real numbers. C99
supports complex numbers as built-in data types whereas C++ uses classes. There are di�erences
for complex numbers in C and C++. But, a typical C or C++ conforming program using complex
numbers can run in Ch, a C interpreter, without any modi�cation. It is recommended that a
commonly used complex construction function polar() be added to resolve the compatibility of
C/C++.

IEEE oating-point extension for complex numbers invented in informative Annex G in C99
is in direct conict with the conventional complex mathematical analysis. The complex model
invented in Annex G in C99 is harmful and dangerous for applications in engineering and science.
Fortunately, Annex G is not mandated in C99 conforming implementations.

An alternative complex model based on the conventional complex analysis under a Riemann
sphere has been presented in this article. In this complex model, there is only one complex in�nity
(Inf, Inf) == ComplexInf in the extended complex domain, one complex Not-a-Number (NaN,

10

Dr. Dobb's Journal, March 2002, pp. 28-34.

NaN)==ComplexNaN, and zero is unsigned. More information about this complex model including
handling of branch cuts of multiple-valued complex functions can be found in the reference [7].

Ch conforms to the C99 standard related to the IEEE 754 oating-point arithmetic and complex
numbers. Following the conventional mathematics, Ch handles numerical numbers consistently in
the entire real and complex domains. Ch treats oating-point real numbers with signed zeros, signed
in�nities (Inf and -Inf), and a Not-a-Number (NaN); and complex numbers with unsigned zeros,
a unique complex in�nity (ComplexInf), and a unique complex Not-a-Number (ComplexNaN) in
an integrated consistent manner. In addition, commonly used high-level functions with complex
numbers for numerical analysis have been implemented in Ch. Numerical computing in the entire
real and complex domains under the framework of C99 and IEEE 754 standards are very useful for
solving problems in engineering and science.

6 References

1. Kernighan, B. W. and Ritchie, D. M., The C Programming Language, Prentice-Hall, Inc.,
Englewood Cli�s, NJ, �rst edition (K&R C), 1978.

2. ISO/IEC, Programming Languages - C, 9899:1990E, ISO, Geneva, Switzerland.

3. ISO/IEC, Programming Languages - C, 9899:1999, ISO, Geneva, Switzerland.

4. Cheng, H. H., The Ch Language Environment, User's Guide, version 2.0, SoftIntegration, Inc.,
September, 2001; http://www.softintegration.com.

5. IEEE, ANSI/IEEE Standard 754-1985, IEEE Standard for Binary Floating-Point Arithmetic,
Institute of Electrical and Electronic Engineers, Inc., Piscataway, NJ, 1985.

6. Cheng, H. H., Scienti�c Computing in the Ch Programming Language, Scienti�c Programming,
Vol. 2, No. 3, Fall, 1993, pp. 49-75.

7. Cheng, H. H., Handling of Complex Numbers in the Ch Programming Language, Scienti�c
Programming, Vol. 2, No. 3, 1993, pp. 79-106.

11

