
Getting Started
with ChIDE and Ch Command Shell

Ch Version 8.0

Copyright c©2016 by SoftIntegration, Inc., All rights reserved

How to Contact SoftIntegration

Mail SoftIntegration, Inc.

216 F Street, #68

Davis, CA 95616

Phone + 1 530 297 7398

Fax + 1 530 297 7392

Web http://www.softintegration.com

Email info@softintegration.com

Copyright c©2016 by SoftIntegration, Inc. All rights reserved.

Revision 8.0, November 2016

Permission is granted for registered users to make one copy for their own personal use. Further reproduction,

or any copying of machine-readable files (including this one) to any server computer, is strictly prohibited.

SoftIntegration, Inc. is the holder of the copyright to the Ch language environment described in this docu-

ment, including without limitation such aspects of the system as its code, structure, sequence, organization,

programming language, header files, function and command files, object modules, static and dynamic loaded

libraries of object modules, compilation of command and library names, interface with other languages and

object modules of static and dynamic libraries. Use of the system unless pursuant to the terms of a license

granted by SoftIntegration or as otherwise authorized by law is an infringement of the copyright.

SoftIntegration, Inc. makes no representations, expressed or implied, with respect to this documenta-

tion, or the software it describes, including without limitations, any implied warranty merchantability

or fitness for a particular purpose, all of which are expressly disclaimed. Users should be aware that

included in the terms and conditions under which SoftIntegration is willing to license the Ch lan-

guage environment as a provision that SoftIntegration, and their distribution licensees, distributors

and dealers shall in no event be liable for any indirect, incidental or consequential damages in con-

nection with, or arising out of, the furnishing, performance, or use of the Ch language environment,

and that liability for direct damages shall be limited to the amount of purchase price paid for the Ch

language environment.

In addition to the foregoing, users should recognize that all complex software systems and their doc-

umentation contain errors and omissions. SoftIntegration shall not be responsible under any circum-

stances for providing information on or corrections to errors and omissions discovered at any time in

this documentation or the software it describes, even if SoftIntegration has been advised of the errors

or omissions. The Ch language environment is not designed or licensed for use in the on-line control

of aircraft, air traffic, or navigation or aircraft communications; or for use in the design, construction,

operation or maintenance of any nuclear facility.

Ch, ChIDE, SoftIntegration, and One Language for All are either registered trademarks or trademarks of

SoftIntegration, Inc. in the United States and/or other countries. Microsoft, MS-DOS, Windows, Windows

2000, Windows XP, Windows Vista, and Windows 7 are trademarks of Microsoft Corporation. Solaris and

Sun are trademarks of Sun Microsystems, Inc. Unix is a trademark of the Open Group. HP-UX is either a

registered trademark or a trademark of Hewlett-Packard Co. Linux is a trademark of Linus Torvalds. Mac

OS X and Darwin are trademarks of Apple Computers, Inc. QNX is a trademark of QNX Software Systems.

AIX is a trademark of IBM. All other trademarks belong to their respective holders.

i

Table of Contents

1 Introduction 1

2 Executing C/Ch/C++ Programs in ChIDE 1

2.1 Getting Started . 1

2.2 Editing and Executing C/Ch/C++ Programs . 2

2.2.1 Editing C/Ch/C++ Program Source Code . 2

2.2.2 Running C/Ch/C++ Programs and Stop Their Execution 5

2.2.3 Output from Execution of Programs . 5

2.2.4 Detecting Program Syntax Errors . 6

2.3 Executing C/Ch/C++ Programs with the User Input . 7

2.4 Executing C/Ch/C++ Programs with Plotting . 7

2.5 Executing C/Ch/C++ Programs with Command Line Arguments 9

2.6 Indenting C/Ch/C++ Programs . 14

3 Editing in ChIDE 14

3.1 Browsing Files . 14

3.2 Edit . 14

3.3 Find and Replace . 15

3.4 Changing Font Size . 16

3.5 Folding . 16

3.6 Keyboard Commands . 16

3.7 Abbreviations . 17

3.8 Buffers . 20

3.9 Sessions . 20

4 Debugging C/Ch/C++ Programs in ChIDE 20

4.1 Executing Programs in Debug Mode . 20

4.2 Setting and Clearing Breakpoints . 21

4.3 Monitoring Local Variables and Their Values in the Debug Pane 21

4.4 Monitoring Variables in Different Stacks and Their Values in the Debug Pane 22

4.5 Using Debug Commands in the Debug Command Pane . 23

4.6 Using the Debug Console Window for Input and Output . 29

5 Getting Started with Ch Command Shell 29

5.1 Portable Commands for Handling Files . 30

5.2 Setup Search Paths for Commands, Header Files, and Function Files in Ch 32

5.3 Interactive Execution of C/Ch/C++ Programs . 34

5.4 Interactive Execution of C/Ch/C++ Expressions and Statements 34

5.5 Interactive Execution of C/Ch/C++ Functions . 37

5.6 Interactive Execution of C++ Features . 39

6 Interactive Execution of Commands in the Input/Output Pane 39

7 Quick Animation 40

8 Compiling and Linking C/C++ Programs in ChIDE 41

ii

9 Other Computer Languages Understood by ChIDE 44

10 Other File Formats Understood by ChIDE 44

11 Local Languages Supported in ChIDE 44

Index 47

iii

2 EXECUTING C/CH/C++ PROGRAMS IN CHIDE

1 Introduction

Ch is an embeddable cross-platform C/C++ interpreter. It is a superset of C with classes in C++. It supports

most new features in the latest C standard called C99 with other user friendly high-level extensions. Ch can

be used for cross-platform scripting, shell programming, 2D/3D plotting, numerical computing, embedded

scripting, and quick animation. With advanced numerical features, Ch can be conveniently used for vari-

ous applications in engineering and science. However, Ch is especially suitable for interactive classroom

presentations in teaching and for students learning C/C++.

An Integrated Development Environment (IDE) can be used to develop C and C++ programs. It can

typically be used to edit programs with added features of automatic syntax highlighting and run the pro-

grams within the IDE. ChIDE is a cross-platform IDE to edit, debug, and run C/Ch/C++ programs in Ch

interpretively without compilation. The user can set breakpoints, run a program step by step, watch and

change values of variables during the program execution, etc. ChIDE is developed using Embedded Ch.

It is the most user-friendly IDE for beginners to learn computer programming in C and C++. ChIDE can

also be used to compile and link edited C/C++ programs using C/C++ compilers of your choice such as

Microsoft Visual Studio .NET in Windows, GNU gcc/g++ in Linux and Mac OS X.

Because Ch is interpretive, C/C++ expressions, statements, functions, and programs can be readily

executed in Ch without compilation. Therefore, Ch is an ideal solution for teaching and learning C/C++. An

instructor can use Ch interactively in classroom presentations with a laptop to quickly illustrate programming

features, especially when answering students’ questions. Learners can also quickly try out different features

of C/C++ without tedious compile/link/execute/debug cycles. To assist beginners in learning, Ch has been

especially developed with many helpful warning and error messages when an error occurs, instead of cryptic

and arcane messages like segmentation fault and bus error or crashing.

This brief document will get the user to quickly start using ChIDE and Ch command shell to learn

computer programming and develop programs in C/Ch/C++.

2 Executing C/Ch/C++ Programs in ChIDE

2.1 Getting Started

ChIDE can be launched by running the same program chide across different platforms.

In Windows, ChIDE can also be conveniently launched by double clicking its icon shown in Figure 1 on

the desktop.

In Mac OS X x86, ChIDE can also be launched by clicking the icon shown in Figure 1 on the dashboard

or in the Applications folder.

In Linux, ChIDE can also be launched under the entry Programming Tools in the startup menu. The

command

ch -d

will create an icon for Ch on the desktop. If Ch is installed with a ChIDE, an icon for ChIDE will also be

created on the desktop.

The command line option for the command chide is as follows.

chide [-d directory] [filenames]

Figure 1: The ChIDE icon in Windows, Mac OS X, and Linux.

1

2.2 Editing and Executing C/Ch/C++ Programs
2 EXECUTING C/CH/C++ PROGRAMS IN CHIDE

Figure 2: Terms related to the layout of ChIDE.

Without the command line option, the command chide will start ChIDE using the information previously

saved when the ChIDE was exited. The option filenames will open one or multiple files. With the

option -d directory, the file browser pane of the ChIDE will list files in the directory directory.

For example, the command

chide -d /Users/home/harry file1.ch file2.ch

will open files file1.ch and file2.ch in the current working directory and the file browser pane will

list files in the directory /Users/home/harry.

2.2 Editing and Executing C/Ch/C++ Programs

2.2.1 Editing C/Ch/C++ Program Source Code

Text editing in ChIDE works similarly to most Windows Mac text editors such as Word and Notepad with

the additional feature of automatic syntax highlighting. ChIDE can hold multiple files in memory at one time

but only one file will be visible. By default, ChIDE allows up to 10 files in memory at once as described in

section 3.8. The general layout of ChIDE is displayed in Figure 2, which also shows various terms used to

describe ChIDE in this document.

As an example, open a new document by clicking the command File| New or the first icon on the

tool bar, and type

2

2.2 Editing and Executing C/Ch/C++ Programs
2 EXECUTING C/CH/C++ PROGRAMS IN CHIDE

Figure 3: The program edited inside the editing pane in ChIDE.

/* File: hello.c

Print ’Hello, world’ on the screen */

#include <stdio.h>

int main() {

printf("Hello, world!\n");

return 0;

}

in the text as shown in Figure 3 in the editing pane. The program appears colored due to syntax highlighting.

When ChIDE is started for the first time, programs in CHHOME/demos/chdemos will be copied

to HOME/chdemos, where CHHOME is the home directory (folder) for Ch such as C:/Ch in Windows

and /usr/local/ch in Mac, and HOME is the user’s home directory such as C:/Documents and

Settings/Administrator. The same program hello.c in HOME/chdemos/hello.c, such as

C:/Documents and Settings/Administrator/chdemos/hello.c in Windows, can also be

loaded using the File->Open command. By default, this program is loaded when the ChIDE is started. In

Windows, a program listed under the Windows explorer can also be dragged and dropped on to the ChIDE,

which will open the program in the editing pane.

The line numbers, margin, and fold margin on the left side of the editing pane can be suppressed as

shown in Figure 4 by clicking the commands View->Line Numbers, Margin, Fold Margin,

respectively. Clicking these commands again will bring these marks back. The fold point markers ’-’ and

’+’ on the fold margin can be clicked to contract and expand a fold for a block of code, respectively. In

Figure 4, the file brower pane is closed by clicking the command View->File Browser Pane.

Save the document as a file named hello.c by the command File->Save As, as shown in Figure 5.

You can also right click the file on the file name on the Tab bar, located below the debug bar, and then select

the command Save As to save the program as shown in Figure 6.

There are five panes in ChIDE: the editing pane, file browser pane, debug pane, debug command pane,

and input/output pane, as shown in Figure 2. The file browser pane is located on the left of the editing pane.

The debug pane is located either to the below of the editing pane or on the right when CHIDE is displayed

in vertical split to be described in the next paragraph. Initially it is of zero size, but it can be made larger

by dragging the divider between it and the editing pane. The debug command pane is located either to the

below of the debug pane or on the right. Details about the debug pane and debug command pane will be

described in section 4. Similarly, the input/output pane is located either to the below of the debug pane or

on the right. The input/output pane is on the left of the debug command pane. Initially the input/output pane

3

2.2 Editing and Executing C/Ch/C++ Programs
2 EXECUTING C/CH/C++ PROGRAMS IN CHIDE

Figure 4: The program displayed without line numbers, margin, fold margin, and file browser pane in

ChIDE.

Figure 5: Saving the edited program using the command File | Save As in ChIDE.

Figure 6: Saving the edited program in ChIDE by right clicking the file name.

4

2.2 Editing and Executing C/Ch/C++ Programs
2 EXECUTING C/CH/C++ PROGRAMS IN CHIDE

Figure 7: Executing the program using the command Run in ChIDE and its output.

is of zero size, but it can also be made larger by dragging the divider between it and the debug pane. By

default, the output from the program is directed into the input/output pane.

The View->Vertical Split command can be used to change the layout of the ChIDE in vertical

mode, in which the file browser pnae is on the left, followed by the editing pane, then the debug pane, and

the input/output pane and debug command pane on the right. The location and size of the ChIDE, the sizes

of file browser pane, editing pane, debug pane, and input/output pane in the current session are saved when

ChIDE is closed. When ChIDE is started next time, these saved values in the previous session will be used

for the new session. The command View->Default Layout will use the values in ChIDE global and

user options files to reset ChIDE to use the default layout.

2.2.2 Running C/Ch/C++ Programs and Stop Their Execution

A C/Ch/C++ program with the file extension .c, .ch, .cpp, .cc, and .cxx, or without file extension

can readily be executed in ChIDE. Perform the Run on the debug bar or Tools->Run command as shown

in Figure 7 to execute the program hello.c. Instead of performing the Run or Tools->Run command,

pressing function key F2 will also execute the program. Details for keyboard commands are described in

section 3.6.

You may use the command Parse on the debug bar or Tools->Parse to just check the syntax error

of the program without executing it.

If the command execution has failed and is taking too long to complete, then the

Stop on the debug bar or Tools->Stop Executing command can be used to stop the program.

2.2.3 Output from Execution of Programs

When the program hello.c is executed, the input/output pane will be made visible if it is not already

visible and will display

>ch -u "hello.c"

Hello, world

>Exit code: 0

5

2.2 Editing and Executing C/Ch/C++ Programs
2 EXECUTING C/CH/C++ PROGRAMS IN CHIDE

as shown in Figure 7. The first line in the blue color

>ch -u "hello.c"

from ChIDE shows that it uses the command ch to execute the program hello.c. The next line in the

black color is the output from running the program hello.c. The last line in the blue color is from ChIDE

showing that the program has finished. This line displays the exit code for the program. An exit code of 0

indicates that the program is terminated successfully by the statement

return 0;

or

exit (0);

in the program. If a failure had occurred during the execution of the program or the program is terminated

with a non-zero value for a return or exit statement such as

return -1;

or

exit(-1);

the exit code would be -1.

2.2.4 Detecting Program Syntax Errors

ChIDE understands the error messages produced by Ch. To see this, add a mistake to the program by

changing the line

printf("Hello, world\n");

to

printf("Hello, world\n";

Perform the Run or Tools->Run command for the modified program. The results should look similar to
those below

ERROR: missing ’)’ before ’;’

ERROR: syntax error before or at line 7 in file ’C:\ch\demos\bin\hello.c’

==>: printf("Hello, world\n";

BUG: printf("Hello, world\n"; <== ???

ERROR: cannot execute command ’C:\ch\demos\bin\hello.c’

as shown in Figure 8. Because the program fails to execute, the exit code -1 is displayed at the end of the

input/output pane as

>Exit code: -1

6

2.3 Executing C/Ch/C++ Programs with the User Input
2 EXECUTING C/CH/C++ PROGRAMS IN CHIDE

Figure 8: The error line in output from executing program hello.c.

If you double click the red colored error message in the input/output pane shown in Figure 8 with the left

button of your mouse, the line with incorrect syntax and the error message in the input/output pane will be

highlighted with yellow backgrounds as shown in Figure 9. The caret is moved to this line and the pane is

automatically scrolled if needed to show the line. ChIDE understands both the file name and line number

parts of error messages so it can open another file (such as a header file) if errors were caused by that file.

While it is easy to see where the problem is in this simple case, with a large file, the

Tools->Next Error Message command, or the function key F4, can be used to view each of the

reported errors. Upon performing Tools->Next Error Message, the first error message in the in-

put/output pane and the appropriate line in the editing pane are highlighted with yellow backgrounds.

The command Tools->Previous Error Message, or the function key Shift+F4, can be used

to view the previous error message.

The input/output pane can be opened and closed by the command View->Input/Output Pane. By

default, before a program is executed, the input/output pane will be cleared. To keep the contents in the in-

put/output pane, click the command View->Clear Input/Output Pane on Execute. The con-

tents of the input/output pane can be cleared by the command View->Clear Input/Output Pane

or the function key F9 as shown in Figure 10.

2.3 Executing C/Ch/C++ Programs with the User Input

ChIDE can also execute programs that require the user’s input through such C functions as scanf(). For ex-

ample, load the program C:/Ch/demos/bin/scanf.c in Windows or

/usr/local/ch/demos/bin/scanf.c in Linux or Mac OS X, as shown in Figure 11.

When the program is executed, the user will be prompted to input a number as shown in Figure 11. The

user then must type in a number in the input/output pane. Both input number of 56 and output are shown in

Figure 11.

2.4 Executing C/Ch/C++ Programs with Plotting

Running a C/Ch/C++ program with graphical plotting is the same as running other programs. This can be

demonstrated by an example.

7

2.4 Executing C/Ch/C++ Programs with Plotting
2 EXECUTING C/CH/C++ PROGRAMS IN CHIDE

Figure 9: Finding the error line in output from executing program hello.c.

Figure 10: Clearing the contents in the input/output pane.

8

2.5 Executing C/Ch/C++ Programs with Command Line Arguments
2 EXECUTING C/CH/C++ PROGRAMS IN CHIDE

Figure 11: Executing the program with input and output.

Type in the code as shown in Figure 12. The same program can also be loaded from

C:/Ch/demos/bin/fplotxy.cppWhen the program is executed, it creates a plot shown in Figure 13.

The plotting function fplotxy() is available in Ch or SoftIntegration C++ Graphical Library (SIGL). The pro-

gram uses the plotting function fplotxy() to plot function func() with 37 points and with the x value in the

range from 0 to 360.

To compile a program using plotting features with header file chplot.h, the program has to be treated as

a C++ program with file extension .cpp to link with a SIGL C++ plotting library. How to compile a C++

program using a C++ compiler will be described in section8.

Many sample programs are available in CHHOME/demos/bin and CHHOME/demos/lib/libch/plot di-

rectories to demonstrate capabilities and usages of the plotting features in Ch. For example, the program

C:/Ch/demos/bin/plotxy.cppuses the plotting function plotxy() plot data stored in arrays. When it

is executed, it creates the same plot shown in Figure 13. The program

C:/Ch/demos/bin/fplotxyz.cpp uses the plotting function fplotxyz() to plot the function

cos(x) sin(y) with two independent variables x and y for the x value in the range from -3 to 3 and y in the

range of -4 to 4. The plot uses 80 points for both x and y coordinates. The program

C:/Ch/demos/bin/legend.cpp shows how to add legends for multiple curves to a plot.

2.5 Executing C/Ch/C++ Programs with Command Line Arguments

ChIDE can run programs with changeable command line arguments. To set the command line arguments,

use the Tools->Command Line Arguments command to view the modeless Command Line Argu-

ment dialog which shows the current command line arguments and allows setting new values. The acceler-

ator keys for the main window remain active while this dialog is displayed, so it can be used to rapidly run

a command several times with different arguments. Alternatively, a command executed in the input/output

pane as described in section 6 can be made to display the modal Command Line Arguments dialog when

executed by starting the command with a ’*’ which is otherwise ignored as shown below.

9

2.5 Executing C/Ch/C++ Programs with Command Line Arguments
2 EXECUTING C/CH/C++ PROGRAMS IN CHIDE

Figure 12: A program using the plotting function fplotxy().

* C:/Ch/demos/bin/commandarg.c

* "C:/Ch/demos/bin/commandarg.c"

If the modeless Command Line Arguments dialog is already visible, then the ’*’ is ignored.

The program in Figure 14 will accept the command line arguments and print them out. The command

Tools->Command Line Arguments as shown in Figure 15 launches the modeless Command Line

Argument dialog. Figure 16 shows how command line arguments are setup. The output from execution of

this program with command line arguments is displayed in Figure 17.

10

2.5 Executing C/Ch/C++ Programs with Command Line Arguments
2 EXECUTING C/CH/C++ PROGRAMS IN CHIDE

-1

-0.5

0

0.5

1

0 50 100 150 200 250 300 350 400

si
n(

x)

x (degree)

function sin(x)

Figure 13: The output of the plotting program in Figure 12.

Figure 14: A program for handling command line arguments.

11

2.5 Executing C/Ch/C++ Programs with Command Line Arguments
2 EXECUTING C/CH/C++ PROGRAMS IN CHIDE

Figure 15: Launching the modal Command Line Arguments dialog.

Figure 16: Setting command line arguments.

12

2.5 Executing C/Ch/C++ Programs with Command Line Arguments
2 EXECUTING C/CH/C++ PROGRAMS IN CHIDE

Figure 17: Executing the program with command line arguments.

13

2.6 Indenting C/Ch/C++ Programs 3 EDITING IN CHIDE

Figure 18: Displaying the parent directories of the current working directory.

2.6 Indenting C/Ch/C++ Programs

For readability and software maintenance, each line in a program should be properly indented. This is

especially important for readability for a program with many nested loops and selection statements. The

command Tools->Indent on the menu bar properly indents the program in the editing pane. You can

also right click the file on the file name on the Tab bar, located below the debug bar, and then select the

command Indent to indent the program. Figure 6 shows the command Indent when the file name

hello.c on the Tab bar is right clicked.

3 Editing in ChIDE

Most text editing features in a word processor such as Microsoft Word or Notepad are available in ChIDE.

Menus on the tool bar and menus under the command Edit on the menu bar can be used to edit programs

in the editing pane. Some unique features for editing C/Ch/C++ programs in ChIDE are described in this

section.

3.1 Browsing Files

Programs in the current working directory are displayed in the file browser pane, as shown in Figure 2. The

current working directory is displayed at the end of the tool bar and also at the top of the file browser pane.

The first entry under Directories and Files in the file browser pane is the parent directory of the

current working directory. Clicking the arrow at the end of the current working directory in the file browser

pane, all parent directories of the current working directory are displayed as shown in Figure 18. Selecting

a parent directory, its contents will be displayed in the file browser pane.

The history of current working directories can be displayed by clicking the arrow at the end of the tool

bar as shown in Figure 19. Selecting a directory in the history of the current working directories, the selected

directory will become the current working directory and its contents will be displayed in the file browser

pane.

3.2 Edit

In Windows, Right clicking on the editing pane will also bring up the commonly used editing commands as

shown in Figure 20.

14

3.3 Find and Replace 3 EDITING IN CHIDE

Figure 19: Displaying the history of current working directories.

Figure 20: Using editing commands by right clicking on the editing pane.

As the user inputs the text into the editing pane, if the input string matches a word in the edited file, the

matched word will be displayed. The user can hit the Enter key to automatically complete the input for

the matched word. However, the user can type Ctrl+Enter to list all matched words, use the arrow key

to select a word, then type Enter key to complete the word.

Rectangular regions of text can be selected in ChIDE by holding down the Alt key on Windows or the

Ctrl key on Linux and Mac OS X while dragging the mouse over the text.

Key commands and abbreviations can be used to speed up editing. Table 2 in section 3.6 lists many key

commands for quick editing. Abbreviations are described in section 3.7

3.3 Find and Replace

ChIDE has options to allow searching for words, regular expressions, matching case, in the reverse direction,

wrapping around the end of the document. C style backslash escapes may be used to search and replace

control characters. Replacements can be made individually, over the current selection or over the whole

file. When regular expressions are used, tagged subexpressions can be used in the replacement text. Regular

expressions will not match across a line end. For the user’s convenience, the function key F3 can be used to

search the next word.

15

3.4 Changing Font Size 3 EDITING IN CHIDE

Table 1: Commonly used commands and their corresponding keyboard commands in ChIDE.

Command Keyboard Command

Help F1

Run C/Ch/C++ program in Ch F2

Find Next F3

Find Previous Shift+F3

Next Error Message F4

Previous Error Message Shift+F4

Start (Debug the program) F5

Step (Single step) F6

Next (Step over the next statement) F7

Open or close Input/Output, Debug, Debug Command Pane F8

Clear Input/Output Pane F9

Animate a QuickAnimation file F10

Send output for QuickAnimation F11

Full screen F12

Open or close File Browser Pane Ctrl+1

Open or close Input/Output Pane Ctrl+2

Open or close Debug Pane Ctrl+3

Open or close Debug Command Pane Ctrl+3

3.4 Changing Font Size

For the classroom presentation, the font size of the displayed program can be enlarged by clicking the

command View->Change Font Size, and then make changes. In addition, the keyboard commands

Ctrl+Keypad+,Ctrl+Keypad-, and Ctrl+Keypad/ can be conveniently used during a presentation

to magnify the font size, reduce the font size, and restore the font size to normal, respectively, as shown in

Table 2 in section 3.6. Note that for a laptop without a separate Keypad, to use the keyboard commands,

you need to turn on “Num Lock” by pressing Shift+NumLk key first. Then, use the keys on the keypad.

For example, press the key Ctrl+Keypad+with the key for ‘+’ next to the Shift key.

3.5 Folding

ChIDE supports folding for C/Ch/C++ and several other languages as presented in section 9. Fold points

are based upon indentation for C/Ch/C++ and on counting braces for the other languages. The fold point

markers can be clicked to expand or contract folds as shown in Figures 3 and 4 in section 2.2. The keyboard

command Ctrl+Shift+Click in the fold margin will expand or contract all the top level folds. The

command Ctrl+Click on a fold point to toggle it and perform the same operation on all children. The

command Shift+Click on a fold point to show all children.

3.6 Keyboard Commands

Keyboard commands in ChIDE mostly follow common Windows and GTK+ conventions. All move keys

(arrows, page up/down, home and end) allow to extend or reduce the stream selection when holding the Shift

key, and the rectangular selection when holding the Shift and Alt keys. Some keys may not be available with

some national keyboards or because they are taken by the system such as by a window manager on GTK+.

Keyboard equivalents of menu commands are listed in the menus.

Table 1 lists the most commonly used commands and their corresponding keyboard commands.

16

3.7 Abbreviations 3 EDITING IN CHIDE

Table 2 lists less commonly used commands with no menu equivalent.

By default, function keys F9, F10, F11, and F12 in Mac OS X are pre-binded to certain features. To use

these function keys for ChIDE as shown in Table 1, you can disable these pre-binding with the following

steps:

• Click the Apple symbol on the upper left corner.

• Click System Preferences.

• Click Keyboard & Mouse.

• Click Keyboard Shortcuts.

• Click to disable the pre-selected bindings for F9, F10, F11, and F12.

3.7 Abbreviations

Abbreviations in ChIDE can replace a short name with a predefined text for quick editing text or programs.

To use an abbreviation, type it and use the Edit->Expand Abbreviation command or the Ctrl+B

key to insert the expansion. The abbreviation is replaced by an expansion defined in the abbreviation files,

one is global and the other is the user specific. The global abbreviations for writing C/Ch/C++ can be opened

by the command

Options->Open ChIDE Global Abbreviation File

The global abbreviations can be overwritten by the user abbreviation. The user abbreviation file can be

opened by the command

Options->Open ChIDE User Abbreviation File

An abbreviation file contains a list of entries of the form

abbreviation=expansion

An abbreviation name can have any character (except control characters such as CR and LF), including

accented characters and multibyte characters for Asian languages such as Chinese.

The abbreviation names have properties files limits: they cannot start with sharp (#) or space or tab (but

can have spaces inside); and they cannot have ’=’ character inside. An abbreviation name is limited to 32

characters, which should be more than enough for an abbreviation.

An expansion may contain new line characters indicated by ’\n’. The character ’|’ in an expansion

marks the position where the caret will be after expansion. To include a literal ’|’ in an expasion, use

’||’.

When expanding, the names don’t need to be separated from the previous text, i.e. if you define ë as

’é’, you can expand it inside a word.

If a name is the ending of another one, only the shorter one will be expanded, i.e. if you define ’ring’

and ’gathering’, the later will see only the ’ring’ part expanded.

The global programming abbreviations can be used to speed up the typing and indenting programs.

Table 3 lists the global abbreviations predefined for writing C/Ch/C++ programs.

A sample abbreviation hw is included in the distributed default user abbreviation file. If you type the

abbreviation hw followed by the Ctrl+B key, the contents for the header for a homework assignment, as

shown in Figure 21, will be added in the editing pane conveniently. You may edit the user abbreviation file

by the command

Options->Open ChIDE User Abbreviation File

to configure the abbreviation hw with your name and relevant information for a class or project.

17

3.7 Abbreviations 3 EDITING IN CHIDE

Table 2: Less common commands and their corresponding keyboard commands in ChIDE.

Description Keyboard Command

Magnify font size Ctrl+Keypad+

Reduce font size Ctrl+Keypad-

Restore font size to normal Ctrl+Keypad/

Cycle through the opened files in the buffers Ctrl+Tab

Indent block Tab

Dedent block Shift+Tab

Delete to start of word Ctrl+BackSpace

Delete to end of word Ctrl+Delete

Delete to start of line Ctrl+Shift+BackSpace

Delete to end of line Ctrl+Shift+Delete

Go to start of document Ctrl+Home

Extend selection to start of document Ctrl+Shift+Home

Go to start of display line Alt+Home

Extend selection to start of display line Alt+Shift+Home

Go to end of document Ctrl+End

Extend selection to end of document Ctrl+Shift+End

Go to end of display line Alt+End

Extend selection to end of display line Alt+Shift+End

Expand or contract a fold point Ctrl+Keypad*

Create or delete a bookmark Ctrl+F2

Select to next bookmark Alt+F2

Scroll up Ctrl+Up

Scroll down Ctrl+Down

Line cut Ctrl+L

Line copy Ctrl+Shift+T

Line delete Ctrl+Shift+L

Line transpose with previous Ctrl+T

Line duplicate Ctrl+D

Find matching preprocessor conditional, skipping nested ones Ctrl+K

Select to matching preprocessor conditional Ctrl+Shift+K

Find matching preprocessor conditional backwards, skipping nested ones Ctrl+J

Select to matching preprocessor conditional backwards Ctrl+Shift+J

Previous paragraph. Shift extends selection Ctrl+[

Next paragraph. Shift extends selection Ctrl+]

Previous word. Shift extends selection Ctrl+Left

Next word. Shift extends selection Ctrl+Right

Previous word part. Shift extends selection Ctrl+/

Next word part. Shift extends selection Ctrl+\

18

3.7 Abbreviations 3 EDITING IN CHIDE

Table 3: The default global abbreviations and their expansions. (Continued)

Abbreviation Expansion

com /* | */

inc #include <|>

myinc #include "|"

inp include chplot.h

inl include linkbot.h

inm include mindstorms.h

ina include arduino.h

inw include wiringPi.h

def #define |

main function main()

mainarg function main() with arguments

if if statement

elseif else if statement

else else statement

for for loop

while while loop

do do-while loop

switch switch statement

foreach foreach loop

a [|] for an array index

c ’|’ for a character

s ”|” for a string

p (|) for parentheses

pi M PI|

epsilon FLT EPSILON|

cond | ? : for conditional operator

sizeof sizeof(|)

struct struct structure

union union structure

enum enum structure

class class structure

stdlib.h include stdlib.h

time.h include time.h

assert.h include assert.h

complex.h include complex.h

ctype.h include ctype.h

errno.h include errno.h

fenv.h include fenv.h

float.h include float.h

inttypes.h include inttypes.h

iso646.h include iso646.h

limits.h include limits.h

locale.h include locale.h

math.h include math.h

19

3.8 Buffers
4 DEBUGGING C/CH/C++ PROGRAMS IN CHIDE

Figure 21: Using the abbreviation hw to create the header for a homework assignment.

3.8 Buffers

ChIDE has 10 buffers by default, each containing a file. The number of the default buffers can be changed in

the user option file for ChIDE. The Buffersmenu can be used to switch between buffers, either by select-

ing the file name or using the Buffers->Previous File and Buffers->Next File commands.

The keyboard command Ctrl+Tab cycles through the opened files in the buffers as shown in Table 1 in

section 3.6.

When all the buffers contain files, then opening a new file causes a buffer to be reused which may require

a file to be saved. In this case an alert is displayed to ensure the user wants the file saved.

3.9 Sessions

A session is a list of file names and some options for ChIDE. You can save a complete set of your currently

opened buffers as a session for fast batch-loading in the future. Sessions are stored as plain text files with

the extension ”.session”.

Use the commands File->Load Session and File->Save Session to load/save sessions.

When ChIDE is closed, the opened buffers are saved in a session. When ChIDE is started next time, the

previously saved session will be loaded automatically in the new session.

4 Debugging C/Ch/C++ Programs in ChIDE

The ChIDE has all capabilities available in a typical debugger for binary C programs. The debug interface

commands, such as Start and Step, are available under the command Debug on the menu bar as shown

in Figure 22. They are also available directly on the debug bar. The applicable commands on the debug bar

at any point of debugging will be clickable. Non-clickable commands are dimmed.

4.1 Executing Programs in Debug Mode

The user can execute the program in the editing pane in the debug mode by the Start command or function

key F5. The program will stop when a breakpoint is hit. The user can execute the program line by line either

by command Step or Next. The command Step or function key F6 will step into a function whereas

the command Next or function key F7 will step over the function to the next line. During debugging, the

20

4.2 Setting and Clearing Breakpoints
4 DEBUGGING C/CH/C++ PROGRAMS IN CHIDE

Figure 22: Debug menus.

command Continue can be invoked to continue the execution of the program till the program ends or it

hits a breakpoint, which will be described in section 4.2.

If a program execution has failed and is taking too long to complete, then the command Abort can be

used to stop the program. However, when a program is at the point of accepting input from the user such as

by the input function scanf(), the program cannot be aborted only after the input function finishes.

4.2 Setting and Clearing Breakpoints

Before program execution or during the debugging of an executed program, new breakpoints can be added

to stop the program execution when they are hit. A breakpoint for a line can be added by clicking the left

margin of the line as shown in Figure 2. To clear the breakpoint, click the highlighted red mark on the left

margin of the line. Breakpoints in the debugger can be examined by clicking Breakpoints on the debug

pane selection bar above the debug pane as shown in Figure 2. The debug pane will display the breakpoint

number and its location for each breakpoint. A breakpoint for the current line can also be added by clicking

the command Break. on the debug bar It can also be deleted by clicking the command Clear on the debug

bar. If no breakpoint has been set, the command Clear is non-clickable. A breakpoint cannot be set in a

declaration statement; however, a breakpoint can be set for a declaration statement with initialization such

as

int i = 10;

The program shall not be edited when it is being executed and debugged. Otherwise, a warning message

Warning: Any changes made to the file during debugging will not

be reflected in the current debugging session

will be displayed. After a program is finished its execution, it can be edited. When a program is edited by

deleting or adding new code, the breakpoints set for the program will be updated automatically.

Using debug commands inside the debug command pane, which will be described in section 4.5, a

breakpoint can also be set for functions and controlling variables,

4.3 Monitoring Local Variables and Their Values in the Debug Pane

The command Step on the debug bar or under the command Debug on the menu bar can be used to step

into a function. If the function is not in one of files loaded in the buffer already, the file containing the

21

4.4 Monitoring Variables in Different Stacks and Their Values in the Debug Pane
4 DEBUGGING C/CH/C++ PROGRAMS IN CHIDE

Figure 23: Displaying names and values of local variables in the currently called function.

function will be loaded. At the end of the execution of the program, the file loaded during the debugging

will be removed from the buffer. However, if a breakpoint has been set in the loaded file, the file will be kept

in the buffer when the execution of the program is finished.

When a program is executed line by line by commands Step or Next, names and their corresponding

values of variables in the current stack can be examined in the debug pane by clicking menu Locals on the

debug pane selection bar. When control of the program execution is inside a function, the command Locals

displays the values of local variables and arguments of the function. When control of the program execution

is not in a function of a script, command Locals displays the values of global variables of the program. As

shown in Figure 23, when program func.c, available in the directory CHHOME/demos/bin, is executed

at line 9, highlighted by the color green, local integer variables i and n are 1 and 10, whereas the array a of

double type contains 1, 2, 3, 4, and 5, as shown in the debug pane.

4.4 Monitoring Variables in Different Stacks and Their Values in the Debug Pane

The user can change the function stack during debugging. It can go Up to its calling function or move

Down to the called function so that the variables within its scope can be displayed in the debug pane or

accessed in the debug command pane. Different colors are used to highlight the current line and executing

lines in the calling functions. For example, when clicking command Up in Figure 23, the control flow of the

program moves to its calling function main() at line 15 as highlighted with the blue color in Figure 24. The

menu Down as shown in Figure 23 is not clickable. But, the menu Down is clickable in Figure 24 when the

current stack is moved up. The debug pane at this point displays the name and value of the variable i, the

22

4.5 Using Debug Commands in the Debug Command Pane
4 DEBUGGING C/CH/C++ PROGRAMS IN CHIDE

Figure 24: Displaying names and values of local variables in the calling function.

only regular variable, in the calling function main().

Command Stack displays function, member function, or program name and corresponding stack level

in each stack. The current running function has stack level 0, whereas level n+1 is the function that has

called a function with stack level n. For example, as shown in Figure 25, function func() is called by

function main(), which in turn is invoked by the program func.c.

Names and their corresponding values of variables in all stacks can be displayed by the command

Variables on the debug pane selection bar as shown in Figure 26. Stack levels are highlighted with

the corresponding colors for the current line and executing lines in the calling functions in the editing pane

as shown in Figure 24. In Figure 26, the program is stopped at line 9. Names and values of local variables

inside functions func() and main() as well as global variables are displayed in the debug pane. As one

can see, before line 9 is executed, the value of the global variable g is 200.

When the command

Display special variables in debug pane for Locals and Variables

in the debug menu shown in Figure 22 is clicked, names and values of special variables such as __func__

will be displayed in the debug pane for commands Locals and Variables.

4.5 Using Debug Commands in the Debug Command Pane

Many debug commands inside the debug command pane are available during the debugging of a program.

A prompt

23

4.5 Using Debug Commands in the Debug Command Pane
4 DEBUGGING C/CH/C++ PROGRAMS IN CHIDE

Figure 25: Displaying different stacks at the executing point.

debug>

inside the debug command pane indicates that the debugger is ready to accept debug commands. Type

the command help, it will display all available commands as shown in Figure 27. The menu on the left

before a colon shows a command and the description on the right explains the action taken for the command.

All commands on the debug bar have corresponding commands in this interactive debug command pane.

However, some features are available only through the debug command pane.

The variables, expressions, and functions can be manipulated by commands assign, call, and

print. The command assign assigns a value to a variable, call invokes a function, and print prints

out the value of a variable or expression including functions. It is invalid to print an expression of void type

including a function with return type void. One can also just type an expression, the value of the expression

will be displayed. If the expression is a function with the returning type of void, only the function is called.

For example, commands

debug> assign i=2*10

debug> call func()

debug> print i

20

debug> 2*i

40

debug>

assign the variable i with the value of 10, call function func(), and print out the value of the expression

24

4.5 Using Debug Commands in the Debug Command Pane
4 DEBUGGING C/CH/C++ PROGRAMS IN CHIDE

Figure 26: Displaying names and values of all variables in all stacks .

2*i when the variable i is valid in its current scope. As another example, when program func.c is

executed and stopped at line 9 shown in Figure 28, the values of variables a and i as well as the expression

2*g can be obtained by typing corresponding commands in the debug command pane.

The command start begins debugging a program. The optional command line arguments for the

command start and run are processed and passed to the arguments for the function main(). For example,

to run program C:\Ch\demos\bin\commandarg.c shown in Figure 17, the debug command

debug> start -o option1 -v option2 "option3 with space"

will assign the strings "C:\Ch\demos\bin\commandarg.c", "-0", "option1", "-v",

"option2", and "option3 with space" to elements argv[0],argv[1],argv[2],argv[3],

argv[4], and argv[5], the argument argv of the main function

int main(int argc, char *argv[])

of the Ch script commandarg.c, respectively. The output on the Debug Console Window is similar to that

displayed in the input/output pane in Figure 17. A command line argument with space should be enclosed

within two double quotation marks as shown above for the string "option3 with space".

The program will stop when a breakpoint is hit. The command run will execute the program without

debugging by ignoring breakpoints. Similar to commands on the debug bar, the user can execute the program

25

4.5 Using Debug Commands in the Debug Command Pane
4 DEBUGGING C/CH/C++ PROGRAMS IN CHIDE

Figure 27: Debug commands in the debug command pane.

line by line either by command step or next. The command step will step into a function whereas

the command next will step over the function to the next line. During the debugging, the command cont

can be invoked to continue the execution of the program till it hits a breakpoint or the program ends. The

user can change the function stack during debugging. It can go up to its calling function or move down to

the called function by the commands up and down, respectively, so that the variables within its scope can

be accessed in the debug command pane. The function or program names in all stacks are displayed by

the command stack. Names and their corresponding values of variables in the current stack are displayed

by the command locals. Command variables displays names and values for all variables within its

scope in each stack.

The command watch adds an expression, including a single variable, into a list of watched expressions.

Watched expressions can be added before or during execution of a program. An expression can be removed

from the list of the watched expressions by the remove expr command. The command remove removes

all expressions in the watched list. For example, commands in the debug command pane

debug> watch 2*g

debug> watch i

add expression 2*g and variable i to a list of watched expressions as shown in Figure 29. When the

program is stopped at a breakpoint or stepped into next statement, the values of these watched expressions

26

4.5 Using Debug Commands in the Debug Command Pane
4 DEBUGGING C/CH/C++ PROGRAMS IN CHIDE

Figure 28: Using debug commands in the debug command pane.

can be viewed in the debug pane by clicking the command Watch on the debug pane selection bar as shown

in Figure 29.

Before the program execution or during the debugging of an executed program, new breakpoints can be

added to stop the program execution. A breakpoint can be setup based on three specifications: file name and

line number, function, and controlling variable. When a breakpoint is setup in a function, the program will

stop at its first executable line of the function. When a breakpoint is setup for a variable, the program will

stop when the value of the variable changes. Each breakpoint can have an optional conditional expression.

When a breakpoint location is reached, the conditional expression is evaluated if it exists. The breakpoint

is hit only if the expression is either true or has changed which needs to be specified when the breakpoint

was added. By default, the breakpoint is hit only if the expression is true. Command stopat sets a

new breakpoint specified by a file name and line number in the subsequent arguments. The program breaks

execution when it reaches this location. Command stopin sets a new breakpoint for a function. The

program breaks execution when it reaches the first executable line of the function. Command stopvar

sets a new breakpoint for a controlling variable. The variable is evaluated while the program is running. The

program breaks execution when the value of the variable changes. When each of these command is invoked,

a breakpoint is appended to the list of breakpoints. The optional conditional expression and triggering

method for each breakpoint are passed as the last two arguments of these commands. For example, the

syntaxes for setting a breakpoint in a file with a complete path and line number are as follows.

debug> stopat filename #

debug> stopat filename # condexpr

debug> stopat filename # condexpr condtrue

27

4.5 Using Debug Commands in the Debug Command Pane
4 DEBUGGING C/CH/C++ PROGRAMS IN CHIDE

Figure 29: Setting watch expressions and variables inside the debug command pane to display their values

in the debug pane.

The symbol # should be substituted by a line number. When a breakpoint location is reached, the optional

expression condexpr is evaluated. If the argument condtrue is true or missing, the breakpoint will be

hit if the value for the expression is true; otherwise, the breakpoint will be hit if the value for the expression

has changed. For example, the command

debug> stopat C:/Ch/demos/bin/func.c 6

sets a breakpoint in file func.c located at the directory C:/Ch/demos/bin at line 6. The command

debug> stopat C:/Ch/demos/bin/func.c 6 i+j 1

sets a breakpoint in file func.c at line 6. When the breakpoint location in file func.c at line 6 is reached,

the expression i+j is evaluated and the breakpoint will be hit if the value for the expression i+j is true.

The above command is the same as

debug> stopat C:/Ch/demos/bin/func.c 6 i+j

The command

debug> stopat C:/Ch/demos/bin/func.c 6 i+j 0

sets a breakpoint in file func.c at line 6. When the breakpoint location in file func.c at line 6 is

reached, the expression i+j is evaluated and the breakpoint will be hit if the value for the expression i+j

28

4.6 Using the Debug Console Window for Input and Output
5 GETTING STARTED WITH CH COMMAND SHELL

Figure 30: The Debug Console Window for input/output in debugging.

Figure 31: A Ch icon on a desktop in Windows, Linux, and Mac OS X.

has changed. On the other hand, commands clearline, clearfunc, and clearvar with proper

arguments remove a breakpoint of line, function, and variable type in the list, respectively. Command

clear removes all breakpoints in the debugger.

If a program execution has failed and is taking too long to complete, then the command abort can be

used to stop the program.

The debug command pane can be cleared by clicking the command

View->Clear Debug Command Pane as shown in Figure 10.

4.6 Using the Debug Console Window for Input and Output

Normally, the standard input and output of a program are handled in the input/output pane. For some

applications, such as Windows console applications using the function hitkb(), the user may interface with

the program through a console windows in debug mode. The debug console window can be opened and

closed by the command View->Debug Console Window. When a program is executed in the debug

mode, the standard input, output, and error streams are then redirected in a separate Debug Console Window

shown in Figure 30.

By default, the console window always stays on the top of other windows. This default behavior can be

turned off or on by the command View->Debug Console Window Always on Top. The contents

of the debug console window can be cleared by the command Debug->Clear Debug Console Window

as shown in Figure 10. The colors for background and text as well as the windows size and font size of the

debug console window can be changed by right clicking the ChIDE icon on the upper left corner of the

window and selecting the menu Properties to make changes. Note that for Windows Vista, you need to

run ChIDE with the administrative privilege to make such a change.

5 Getting Started with Ch Command Shell

Ch can be used as a command shell in which commands are processed. Like other commonly used shells

such as the MS-DOS shell, Bash-shell, or C-shell, commands can be executed in a Ch shell. Unlike these

conventional shells, expressions, statements, functions and programs in C and C++ can be readily executed

in a Ch shell.

A Ch shell can be launched by running the command ch. In Windows, Linux, and Mac OS X, a Ch

command shell can also be conveniently launched by clicking the red-colored Ch icon, shown in Figure 31,

on the desktop or on the tool bar of the ChIDE.

29

5.1 Portable Commands for Handling Files
5 GETTING STARTED WITH CH COMMAND SHELL

Figure 32: A Ch command shell.

Assume the user account is the administrator, after a Ch shell is launched in Windows, by default, the

screen prompt of the shell window becomes

C:/Documents and Settings/Administrator>

where C:/Documents and Settings/Administrator is the user’s home directory on the desk-

top as shown in Figure 32. The colors of the text and background as well as the window size and font size

of the shell window can be changed by right clicking the Ch icon at the upper left corner of the window, and

selecting the menu Properties to make changes. Note that for Windows Vista, you need to run ChIDE

with the administrative privilege to make such a change. The displayed directory C:/Documents and

Settings/Administrator is also called the current working directory. If the user account is not the

administrator, the account name Administrator shall be changed to the appropriate user account name. The

prompt indicates that the system is in a Ch shell and is ready to accept the user’s terminal keyboard input.

The default prompt in a Ch shell can be reconfigured. If the input typed in is syntactically correct, it will

be executed successfully. Upon completion of the execution, the system prompt > will appear again. If an

error occurs during the execution of the program or expression, the Ch shell prints out the corresponding

error messages to assist the user in debugging the program.

All statements and expressions of C can be executed interactively in a Ch command shell. For example,

the output Hello, world can be obtained by calling the function printf() interactively as shown below

and as seen in Figure 32.

C:/Documents and Settings/Administrator> printf("Hello, world")

Hello, world

In comparison with Figure 32, the last prompt C:/Documents and Settings/Administrator>

is omitted to save the space in the presentation of this book. Note that the semicolon at the end of a statement

in a C program is optional when the corresponding statement is executed in command mode. There is no

semicolon in calling the function printf() in the above execution.

5.1 Portable Commands for Handling Files

At the system prompt >, not only C programs and statements, but also any other commands (such as pwd

for printing the current working directory) can be executed. In this scenario, Ch is used as a command shell

in the same manner as MS-DOS shell in Windows.

Commands can be executed in a Ch command shell or in a Ch program. There are hundreds of com-

mands along with their respective online documentation in the system. No one knows all of them. Every

computer wizard has a small set of working tools that are used all the time, plus a vague idea of what else is

out there. In this section, we will describe how to use the most commonly used commands, listed in Table 4,

for handling files through examples. It should be emphasized again that these commands running in the Ch

30

5.1 Portable Commands for Handling Files
5 GETTING STARTED WITH CH COMMAND SHELL

shell are portable across different platforms such as Windows, Linux, or Mac OS X. Using these commands,

a user can effectively manipulate files on the system to run C programs.

Assume that Ch is installed in C:/Ch in Windows, the default installation directory. The current work-

ing directory is C:/Documents and Settings/Administrator, which is also the user’s home

directory. The application of portable commands for file handling can be illustrated by interactive execution

of commands in a Ch shell as shown below.

C:/Documents and Settings/Administrator> mkdir c99

C:/Documents and Settings/Administrator> cd c99

C:/Documents and Settings/Administrator/c99> pwd

C:/Documents and Settings/Administrator/c99

C:/Documents and Settings/Administrator/c99> cp C:/Ch/demos/bin/hello.c hello.c

C:/Documents and Settings/Administrator/c99> ls

hello.c

C:/Documents and Settings/Administrator/c99> chide hello.c

As shown in Usage in Table 4, the command mkdir takes one argument as a directory to be created. We

first create a directory called c99 using the command

mkdir c99

Then, we change to this new directory C:/Documents and Settings/Administrator/c99 us-

ing command

cd c99

Next, we display the current working directory with the command

pwd

A C program hello.c shown in Figure 3 in the directory C:/Ch/demos/bin is copied to the working

directory with the same file name using the command

cp C:/Ch/demos/bin/hello.c hello.c

Files in the current directory are listed using the command

ls

At this point, there is only one file hello.c in the directory

C:/Documents and Settings/Administrator/c99. It is recommended that you save all your

developed C programs in this directory so that you may easily find all programs later on. Finally, program

hello.c is launched by the command

chide hello.c

to be edited and executed in ChIDE as shown in Figure 3. For a classroom presentation, sometimes, it is

more convenient to open multiple source files by a single command as shown below:

> chide file1.c file2.c header.h

To use a command dealing with a path with white space, the path needs to be placed inside a pair of

double quotation marks, as shown below, to remove file hello.c.

> rm "C:/Documents and Settings/Administrator/c99/hello.c"

31

5.2 Setup Search Paths for Commands, Header Files, and Function Files in Ch
5 GETTING STARTED WITH CH COMMAND SHELL

5.2 Setup Search Paths for Commands, Header Files, and Function Files in Ch

When a command is typed into a prompt of a command shell for execution, the command shell will search

for the command in prespecified directories. In a Ch shell, the system variable path of string type contains

the directories to be searched for the command. Each directory is separated by a semicolon inside the string

path. When a Ch command shell is launched, the system variable path contains some default search paths.

For example, in Windows, the default search paths are

C:/Ch/bin;C:/Ch/sbin;C:/Ch/toolkit/bin;C:/Ch/toolkit/sbin;C:/WINDOWS;C:/WINDOWS/SYSTEM32;

The user can add new directories to the search paths for the command shell by using the string func-

tion stradd() in the startup file, which will be discussed in detail a little later. This function adds argu-

ments of string type and returns it as a new string. For example, the directory C:/Documents and

Settings/Administrator/c99 is not in the search paths for a command. If you try to run program

hello.c in this directory when the current working directory is

C:/Documents and Settings/Administrator, the Ch shell will not be able to find this pro-

gram, as shown below, and give two error messages.

C:/Documents and Settings/Administrator> hello.c

ERROR: variable ’hello.c’ not defined

ERROR: command ’hello.c’ not found

When Ch is launched or a Ch program is executed, by default, it will execute the startup file .chrc in

Unix such as Linux and Mac OS X or chrc in Windows in the user’s home directory if the startup file

exists. In the remaining presentation, it is assumed that Ch is used in Windows with a startup file chrc in

the user’s home directory. This startup file typically sets up the search paths for commands, header files,

function files, etc. In Windows, a startup file chrc with default setup is created in the user’s home directory

during installation of Ch. However, there is no startup file in a user’s home directory in Unix by default. The

system administrator may add such a startup file in a user’s home directory. However, the user can execute

Ch with the option -d as follows

ch -d

to copy a sample startup file from the directory CHHOME/config/ to the user’s home directory if there is

no startup file in the home directory yet. Note that CHHOME is not the string "CHHOME", instead it uses the

file system path under which Ch is installed. For example, by default, Ch is installed in C:/Ch in Windows

and /usr/local/ch in Unix. In Windows, the command in a Ch shell below

C:/Documents and Settings/Administrator> ch -d

will create a startup file chrc in the user’s home directory

C:/Documents and Settings/Administrator. This local Ch initialization startup file chrc

can be opened by the following command on the menu bar

Options->Open Ch Local Startup File

to edit the search paths in ChIDE, as shown in Figure 33. In Linux, the above command ch -d will also

create an icon for Ch on the desktop. If Ch is installed with a ChIDE, an icon for ChIDE will also be created

on the desktop.

To include the directory C:/Documents and Settings/Administrator/c99 in the search

paths for a command, the following statement

32

5.2 Setup Search Paths for Commands, Header Files, and Function Files in Ch
5 GETTING STARTED WITH CH COMMAND SHELL

Figure 33: Open the local Ch initialization startup file for editing.

_path = stradd(_path, "C:/Documents and Settings/Administrator/c99;");

needs to be added to the startup file chrc in the user’s home directory so that the command hello.c

in this directory can be invoked regardless of what the current working directory is. After the directory

C:/Documents and Settings/Administrator/c99 has been added to the search path, path,

you need to restart a Ch command shell. Then, you will be able to execute the program hello.c in this

directory as shown below.

C:/Documents and Settings/Administrator> hello.c

Hello, world

In Unix such as Linux and Mac OS X, the search paths for commands by default do not contain the

current working directory. To include the current working directory in the search paths for a command, the

following statement

_path = stradd(_path, ".;");

needs to be added in startup file .chrc in the user’s home directory. Function call

stradd(_path, ".;") adds the current directory represented by ’.’ to the system search paths path.
Similar to path for commands, the header files in Ch are searched in directories specified in the system

variable ipath. Each path is also delimited by a semicolon. For example, the statement below

_ipath = stradd(_ipath, "C:/Documents and Setting/Administrator/c99;");

33

5.3 Interactive Execution of C/Ch/C++ Programs
5 GETTING STARTED WITH CH COMMAND SHELL

adds the directory C:/Documents and Setting/Administrator/c99 to the search paths for

header files included by the preprocessing directive #include such as

#include <headerfile.h>

One can also add this directory to the search paths fpath for function files by the statement

_fpath = stradd(_fpath, "C:/Documents and Setting/Administrator/c99;");

A function file contains the function definition, which will be described in section 5.5.

5.3 Interactive Execution of C/Ch/C++ Programs

It is very simple and easy to run C programs interactively without compilation in a Ch shell. For example,

assume that C:/Documents and Settings/Administrator/c99 is the current working direc-

tory as presented in section 5.1. The program hello.c in this directory can be executed in Ch to get the

output of Hello, world as shown below.

C:/Documents and Settings/Administrator/c99> hello.c

Hello, world

C:/Documents and Settings/Administrator/c99> _status

0

The exit code from executing a program in a Ch command shell is kept in the system variable status.

Because the program hello.c has been executed successfully, the exit code is 0 as shown in the above

output when status is typed in the command line.

In Unix such as Linux and Mac OS X, in order to readily use the C program hello.c as a command,

the file has to be executable. The command chmod can change the mode of a file. The following command

chmod +x hello.c

will make the program hello.c executable so that it can run in a Ch command shell.

5.4 Interactive Execution of C/Ch/C++ Expressions and Statements

For simplicity, only the prompt > in a Ch command shell will be displayed in the remaining presentation. If

a C expression is typed in the command shell, it will be evaluated by Ch and the result then will be displayed

on the screen. For example, if the expression 1+3*2 is typed in, the output will be 7 as shown below.

> 1+3*2

7

Any valid C expression can be evaluated in a Ch shell. Therefore, Ch can be conveniently used as a calcu-

lator.

As another example, one can declare a variable at the prompt and then use the variable in the subsequent

calculations as shown below.

> int i

> sizeof(int)

4

> i = 30

34

5.4 Interactive Execution of C/Ch/C++ Expressions and Statements
5 GETTING STARTED WITH CH COMMAND SHELL

30

> printf("%x", i)

1e

> printf("%b", i)

11110

> i = 0b11110

30

> i = 0x1E

30

> i = -2

-2

> printf("%b", i)

11111111111111111111111111111110

> printf("%32b", 2)

00000000000000000000000000000010

In the above C statements, variable i is declared as int type with 4 bytes. Then, the integer value 30 for

i is displayed in decimal, hexadecimal, and binary numbers. The integral constants in different number

systems can also be assigned to variable i as seen above. Finally, the two’s complement representation of

the negative number −2 is also displayed. Characteristics for all other data types in C can also be presented

interactively.

By default, a value of float or double type is displayed with two or four digits after the decimal point,

respectively. For example,

> float f = 10

> 2*f

20.00

> double d = 10

> d

10.0000

All C operators can be used interactively as shown below.

> int i=0b100, j = 0b1001

> i << 1

8

> printf("%b", i|j)

1101

The concept of pointers and addresses of variables can be illustrated as shown below.

> int i=10, *p

> &i

1eddf0

> p = &i

1eddf0

> *p

10

> *p = 20

35

5.4 Interactive Execution of C/Ch/C++ Expressions and Statements
5 GETTING STARTED WITH CH COMMAND SHELL

20

> i

20

In this example, the variable p of pointer to int points to the variable i. The working principle for pointer to

pointer can also be interactively illustrated in the same manner. In the next example, the relation of arrays

and pointers is illustrated as follows:

> int a[5] = {10,20,30,40,50}, *p;

> a

1eb438

> &a[0]

1eb438

> a[1]

20

> *(a+1)

20

> p = a+1

1eb43c

> *p

20

> p[0]

20

Expressions a[1], *(a+1), *p, and p[0] all refer to the same element. Multi-dimensional arrays

can also be handled interactively. The boundary of an array is checked in Ch to detect potential bugs. For

example,

> int a[5] = {10,20,30,40,50}

> a[-1]

WARNING: subscript value -1 less than lower limit 0

10

> a[5]

WARNING: subscript value 5 greater than upper limit 4

50

> char s[5]

> strcpy(s, "abc")

abc

> s

abc

> strcpy(s, "ABCDE")

ERROR: string length s1 is less than s2 in strcpy(s1,s2)

ABCD

> s

ABCD

The allowed indices for array a of 5 elements are from 0 to 4. Array s can only hold 5 characters including

a null character. Ch can catch bugs in existing C code related to the array boundary overrun such as these.

The alignment of a C structure or C++ class can also be examined as shown below.

36

5.5 Interactive Execution of C/Ch/C++ Functions
5 GETTING STARTED WITH CH COMMAND SHELL

> struct tag {int i; double d;} s

> s.i =20

20

> s

.i = 20

.d = 0.0000

> sizeof(s)

16

In this example, although the sizes of int and double are 4 and 8, respectively, the size of structure s with

two fields of int and double types is 16, instead of 12, for the proper alignment.

5.5 Interactive Execution of C/Ch/C++ Functions

A program can be divided into many separate files. Each file consists of many related functions, which can

be accessible to any part of a program. All functions in the C standard libraries can be executed interactively

and can be used inside user defined functions. For example, in the interactive execution:

> srand(time(NULL))

> rand()

4497

> rand()

11439

> double add(double a, double b) {double c; c=a+b+sin(1.5); return c;}

> double c

> c = add(10.0, 20)

30.9975

The random number generator function rand() is seeded with a time value in srand(time(NULL). Function

add() which calls type-generic mathematical function sin() is defined at the prompt and then used.

A file that contains more than one function definition is usually suffixed with .ch to identify itself as

part of a Ch program. One can create a function file in a Ch programming environment. A function file in

Ch is a file that contains only one function definition. The name of a function file ends in .chf, such as

addition.chf. The names of the function file and function definition inside the function file must be the

same. The functions defined using function files are treated as if they were system built-in functions in Ch.

Similar to path for commands, a function is searched based on the search paths in the system variable

fpath for function files. Each path is delimited by a semicolon. By default, the variable fpath contains the

paths lib/libc, lib/libch, lib/libopt, and libch/numeric in the home directory of Ch.

If the system variable fpath is modified interactively in a Ch shell, it will be effective only for functions

invoked in the current shell interactively. For running scripts, the setup of function search paths in the current

shell will not be used and inherited in subshells. In this case, the system variable fpath can be modified in

startup file chrc in Windows or .chrc in Unix in the user’s home directory.
For example, if a file named addition.chf contains the program shown in Program 1, the function

addition() will be treated as a system built-in function, which can be called to compute the sum
a + b of two input arguments a and b. Assume that the function file addition.chf is located at
C:/Documents and Settings/Administrator/c99/addition.chf, the directory
C:/Documents and Settings/Administrator/c99 should be added to the function search path
in the startup file .chrc in Unix or fpath in Windows in the user’s home directory with the following state-
ment.

37

5.5 Interactive Execution of C/Ch/C++ Functions
5 GETTING STARTED WITH CH COMMAND SHELL

/* File: addition.chf

A function file with file extension .chf */

int addition(int a, int b) {

int c;

c = a + b;

return c;

}

Program 1: Function file addition.chf.

/* File: program.c

Program uses function addition() in function file addition.chf */

#include <stdio.h>

/* This function prototype is optional when function addition() in

file addition.chf is used in Ch */

int addition(int a, int b);

int main() {

int a = 3, b = 4, sum;

sum = addition(a, b);

printf("sum = %d\n ", sum);

return 0;

}

Program 2: A program using function file addition.chf.

_fpath=stradd(_fpath, "C:/Documents and Settings/Administrator/c99;");

Function addition() then can be used either interactively in command mode as shown below,

> int i = 9

> i = addition(3, i)

12

or inside programs. In Program 2, the function addition() is called without a function prototype in

the main() function so that the function prototype defined inside the function file addition.chfwill be

invoked. If the search paths for function files have not been properly setup, a warning message such as

WARNING: function ’addition()’ not defined

will be displayed, when the function addition() is called.

When a function is called interactively in a Ch shell, the function file will be loaded. If you modify

a function file after the function has been called, the subsequent calls in the command mode will still use

the old version of the function definition that had been loaded. To invoke the modified version of the

new function file, you can either remove the function definition in the system using the command remvar

followed by a function name. or start a new Ch shell by typing ch at the prompt. For example, the command

> remvar addition

removes the definition for function addition(). The command remvar can also be used to remove a

declared variable.

38

5.6 Interactive Execution of C++ Features6 INTERACTIVE EXECUTION OF COMMANDS IN THE INPUT/OUTPUT PANE

5.6 Interactive Execution of C++ Features

Not only C programs can be executed in Ch, but also classes and some C++ features are supported in Ch as

shown below for interactive execution of C++ code.

> int i

> cin >> i

10

> cout << i

10

> class tagc {private: int m_i; public: void set(int); int get(int &);}

> void tagc::set(int i) {m_i = 2*i;}

> int tagc::get(int &i) {i++; return m_i;}

> tagc c

> c.set(20)

> c.get(i)

40

> i

11

> sizeof(tagc)

4

The input and output can be handled using cin and cout in C++. The public method tagc::set() sets the

private member m i, whereas the public method tagc::get() gets its value. The argument of method

tagc::get() is passed by reference. The size of the class tagc is 4 bytes which does not include the

memory for member functions.

6 Interactive Execution of Commands in the Input/Output Pane

Binary commands or C/C++ programs can also be executed interactively inside the input/output pane as

shown in Figure 34. In Figure 34, the program hello.c is executed first in the input/output pane. Then,

the command pwd prints the current working directory. The command ls lists files and directories in the

current working directory. Options of a command can also be provided. For example, the command ls can

invoked in the form of

ls -F

to list directories with a forward slash at the end.

To use a command with a complete path which containing a white space, the path needs to be placed

inside a pair of double quotation marks, as shown below.

> "C:/Documents and Settings/Administrator/c99/hello.c"

How to execute /C/Ch/C++ programs with command line arguments is described in section 2.5.

39

7 QUICK ANIMATION

Figure 34: Executing commands inside the input/output pane.

7 Quick Animation

Ch can be used for quick animation using QuickAnimationTM. It can also be used to display various

objects based on specified x-y coordinate data. QuickAnimationTM is especially suitable for animation

of two-dimensional mechanical systems. Detailed information about QuickAnimationTM can be found

QuickAnimation User’s Guide available in CHHOME/docs/qanimate.pdf.

A QuickAnimation file with the file extension .qnm can be edited in ChIDE with syntqax highlighting,

as shown in Figure 35 for the QuickAnimation file circles.qnm. The animation for circles.qnm

can be created by clicking the command Animate->qanimate (Animate a qnm file) or the

function key F10, as shown in Figure 35. Figure 36 shows all frames for the animation.

A Ch program can be written to generate the standard output in the QuickAnimation format, using the

standard C functions such as printf(). The standard output can be sent to the QuickAnimation program qan-

imate directly by clicking the command Animate->Output to qanimate or the function key F11,

as shown in Figure 37 for running the program CHHOME/demos/qanimate/smileyfaceanim.c.

Figure 38 shows a snapshot of the generated animation.

40

8 COMPILING AND LINKING C/C++ PROGRAMS IN CHIDE

Figure 35: Executing a QuickAnimation file circles.qnm.

Figure 36: The output from executing the QuickAnimation file circles.qnm in Figure 35.

8 Compiling and Linking C/C++ Programs in ChIDE

ChIDE can also compile and link an edited C/C++ program in the editing pane using C and C++ compil-

ers, then execute the created binary executable program. By default, the ChIDE is configured during the

installation to use the latest Microsoft Visual Studio .NET installed in your Windows to compile C and C++

programs. The environment variables and commands for the Visual Studio compiler can be modified in the

individual startup configuration file chrc in the user’s home directory, which can be opened for editing as

shown in Figure 33. In Linux and Mac OS X x86, ChIDE uses compilers GNU gcc and g++ to compile C

and C++ programs, respectively. The default compiler can be changed by modifying the C/Ch/C++ property

file cpp.propertieswhich can be opened by the command Options->cpp.properties.

The command Tools->Compile as shown in Figure 39 can be used to compile a program. The

output and error messages for compiling a C or C++ program are displayed in the input/output pane of the

ChIDE. In Windows, compiling a program will create an object file with file extension .obj. The object

file can be linked using the command Tools->Link to create an executable program. The executable in

Windows has file extension .exe.

If a make file makefile or Makefile is available in the current directory, the command Tools->Build

will invoke the make file to build an application. A make file can also be invoked by right clicking the file

name on the file tab, then clicking the command make in Linux or Mac and the command make or nmake

in Windows as shown in Figure 40.

When ChIDE is used to edit a make file, the syntax will be highlighted. Because the tab character is

reserved as a special character to begin a command for some make command, it will be preserved and not

replaced with white spaces. A file with the file extension .mak or with the following file name is recognized

41

8 COMPILING AND LINKING C/C++ PROGRAMS IN CHIDE

Figure 37: Executing a program with the standard output (stdout) sent to QuickAnimation.

Figure 38: The output from executing the program smileyfaceanim.c in Figure 37.

42

8 COMPILING AND LINKING C/C++ PROGRAMS IN CHIDE

Figure 39: Compiling a C/C++ program.

Figure 40: Using a makefile to compile a C/C++ program.

43

11 LOCAL LANGUAGES SUPPORTED IN CHIDE

as a make file in ChIDE:

makefile

makefile.win

makefile_win

makefile.Win

makefile_Win

Makefile

Makefile.win

Makefile_win

Makefile.Win

Makefile_Win

The command Tools->Gowill execute the developed executable program.

9 Other Computer Languages Understood by ChIDE

ChIDE is a general-purpose text editor. It currently is able to syntax highlighting the following languages.

• C/Ch/C++*

• CSS*
• HTML*
• Make
• SQL and PLSQL
• TeX and LaTeX

• XML*

If the symbol ’*’ is attached to a language, it denotes that the folding as described in section 3.5 is supported

for the language.

Language settings are determined from the file extension but this can be changed by selecting another

language from the Language menu.

10 Other File Formats Understood by ChIDE

ChIDE can handle not only C/Ch/C++ and other computer languages, but also some commonly used media

files. In Windows and Mac OS X, when ChIDE is used to open a file with the file extension .jpg, .png,

.mpg, .avi, .mov, .wmv, .gif, .mp4,.doc, .docx, .xls, o r.xlsx, an external pro-

gram will be launched to handle these files of images, videos, and document types.

11 Local Languages Supported in ChIDE

When Ch is installed in a platform in a language different from English, the menus and dialogs of ChIDE

will be in its local language. By default, ChIDE supports more than 30 local languages as follows:

Afrikaans, Aribic, Basque, Brazilian Portuguese, Bulgarian, Catalan, Chinese Simplified, Chinese Tra-

ditional, Czech, Danish, Dutch, French, Galician, German, Greek, Hungarian, Indonesian, Italian, Japanese,

Korean, Malaysian, Norwegian, Polish, Romanian, Portuguese, Russian, Serbian, Slovenian, Spanish, Span-

ish (Mexican), Swedish, Thai, Turkish, Ukrainian, and Welsh.

A new local language can also be easily supported.

44

11 LOCAL LANGUAGES SUPPORTED IN CHIDE

Table 3: (Continued)

Abbreviation Expansion

setjmp.h include setjmp.h

signal.h include stdarg.h

stdarg.h include stdarg.h

stdbool.h include stdbool.h

stddef.h include stddef.h

stdint.h include stdint.h

stdio.h include stdio.h

stdlib.h include stdlib.h

string.h include string.h

tgmath.h include tgmath.h

time.h include time.h

wchar.h include wchar.h

wctype.h include wctype.h

chdl.h include chdl.h

chshell.h include chshell.h

numeric.h include numeric.h

chplot.h include chplot.h

linkbot.h include linkbot.h

mindstorms.h include mindstorms.h

arduino.h include arduino.h

wiringPi.h include wiringPi.h

func a function definition

prot |(); for a function prototype

call |(); for calling a function

printf printf("|\n");

scanf scanf("|", &);

sin sin(|)

a standard C function name call the standard C function

a member function name call the member function in chplot.h

a member function name call the member function in linkbot.h

a member function name call the member function in mindstorms.h

45

11 LOCAL LANGUAGES SUPPORTED IN CHIDE

Table 4: Portable commands for handling files.

Command Usage Description

cd cd change to the home directory

cd dir change to the directory dir

cp cp file1 file2 copy file1 to file2

ls ls list contents in the working directory

mkdir mkdir dir create a new directory dir

pwd pwd print (display) the name of the working directory

rm rm file remove file

chmod chmod +x file change the mode of file to make it executable

chide chide file.c launch ChIDE for editing and executing file.c

46

Index

.chrc, 32

chrc, 32

fpath, 37

ipath, 33

path, 32, 33

abbreviations, 17

animation, 40

buffers, 20

cd, 30

ChIDE, 1

chide, 30

chmod, 34

chrc, 32

command shell, 29

commands, 39

compile, 41

Compile and Link Commands

Build, 41

Compile, 41

Go, 41

Link, 41

copyright, i

cp, 30

CSS, 44

Debug Command

Watch, 26

Debug Commands

Abort, 21

Continue, 20

Down, 22

Next, 20, 22

Parse, 5

Run, 5

Start, 20

Step, 20, 22

Stop, 5

Up, 22

Debug Commands inside Debug Command Pane

abort, 29

assign, 24

call, 24

clear, 29

clearfunc, 29

clearline, 29

clearvar, 29

cont, 26

down, 26

expr, 24

help, 23

locals, 26

next, 26

print, 24

remove, 26

remove expr, 26

run, 25

stack, 26

start, 25

step, 26

stopat, 27

stopin, 27

stopvar, 27

up, 26

variables, 26

watch, 26

Debug Console Window, 29

Debug Pane

Breakpoints, 21

Locals, 22

Stack, 23

Variables, 23

debugging, 20

edit, 14

Embedded Ch, 1

file format, 44

avi, 44

doc, 44

docx, 44

gif, 44

jpg, 44

mov, 44

mp4, 44

mpg, 44

png, 44

wmv, 44

xls, 44

xlsx, 44

find, 15

folding, 16

font size, 16

function

function files, 37

function keys, 16

homework, 17

HTML, 44

html, 44

IDE, 1

47

INDEX INDEX

Input/Output Pane, 7

input/output pane, 39

Integrated Development Environment, 1

keyboard commands, 16

languages

CSS, 44

HTML, 44

html, 44

LaTeX, 44

Make, 44

PLSQL, 44

SQL, 44

Tex, 44

XML, 44

LaTeX, 44

link, 41

ls, 30

Make, 44

Makefile, 41

makefile, 41

mkdir, 30

Output, 7

PLSQL, 44

prompt, 29

pwd, 30

quick animation, 40

QuickAnimation, 40

remvar, 38

replace, 15

rm, 30

sessions, 20

SQL, 44

stradd(), 32, 33

Tex, 44

Unix Commands

cd, 30

cp, 30

ls, 30

mkdir, 30

pwd, 30

rm, 30

rmdir, 30

XML, 44

48

	Introduction
	Executing C/Ch/C++ Programs in ChIDE
	Getting Started
	Editing and Executing C/Ch/C++ Programs
	Editing C/Ch/C++ Program Source Code
	Running C/Ch/C++ Programs and Stop Their Execution
	Output from Execution of Programs
	Detecting Program Syntax Errors

	Executing C/Ch/C++ Programs with the User Input
	Executing C/Ch/C++ Programs with Plotting
	Executing C/Ch/C++ Programs with Command Line Arguments
	Indenting C/Ch/C++ Programs

	Editing in ChIDE
	Browsing Files
	Edit
	Find and Replace
	Changing Font Size
	Folding
	Keyboard Commands
	Abbreviations
	Buffers
	Sessions

	Debugging C/Ch/C++ Programs in ChIDE
	Executing Programs in Debug Mode
	Setting and Clearing Breakpoints
	Monitoring Local Variables and Their Values in the Debug Pane
	Monitoring Variables in Different Stacks and Their Values in the Debug Pane
	Using Debug Commands in the Debug Command Pane
	Using the Debug Console Window for Input and Output

	Getting Started with Ch Command Shell
	Portable Commands for Handling Files
	Setup Search Paths for Commands, Header Files, and Function Files in Ch
	Interactive Execution of C/Ch/C++ Programs
	Interactive Execution of C/Ch/C++ Expressions and Statements
	Interactive Execution of C/Ch/C++ Functions
	Interactive Execution of C++ Features

	Interactive Execution of Commands in the Input/Output Pane
	Quick Animation
	Compiling and Linking C/C++ Programs in ChIDE
	Other Computer Languages Understood by ChIDE
	Other File Formats Understood by ChIDE
	Local Languages Supported in ChIDE
	Index

