nag_kalman_sqrt_filt_cov_invar (g13ebc)

1. Purpose

nag_kalman_sqrt_filt_cov_invar (g13ebc) performs a combined measurement and time update of one iteration of the time-invariant Kalman filter. The method employed for this update is the square root covariance filter with the system matrices transformed into condensed observer Hessenberg form.

2. Specification

```c
#include <nag.h>
#include <nagg13.h>

void g13ebc(Integer n, Integer m, Integer p, double s[], Integer tds,
             double a[], Integer tda, double b[], Integer tdb, double q[],
             Integer tdq, double c[], Integer tdc, double r[], Integer tdr,
             double k[], Integer tdk, double h[], Integer tdh, double tol,
             NagError *fail)
```

3. Description

For the state space system defined by
\[
X_{i+1} = AX_i + BW_i \quad \text{var}(W_i) = Q_i \\
Y_i = CX_i + V_i \quad \text{var}(V_i) = R_i
\]
the estimate of \(X_i\) given observations \(Y_1\) to \(Y_{i-1}\) is denoted by \(\hat{X}_{j|i-1}\), with \(\text{var}(\hat{X}_{j|i-1}) = P_{j|i-1} = S_iS_i^T\) (where \(A, B\) and \(C\) are time invariant).

The function performs one recursion of the square root covariance filter algorithm, summarized as follows:
\[
\begin{pmatrix}
R_i^{1/2} & 0 & CS_i \\
0 & BQ_i^{1/2} & AS_i
\end{pmatrix}
\begin{pmatrix}
H_i^{1/2} & 0 & 0 \\
G_i & S_{i+1} & 0
\end{pmatrix}
\]

(Pre-array) (Post-array)

where \(U_i\) is an orthogonal transformation triangularizing the pre-array, and the matrix pair \((A,C)\) is in lower observer Hessenberg form. The triangularization is carried out via Householder transformations exploiting the zero pattern of the pre-array.

An example of the pre-array is given below (where \(n = 6, p = 2\) and \(m = 3\)):

```
x x x x x x x x x x x x
x x x x x x
x x x x x x
x x x x x x
x x x x x x x x
x x x x x x x x x
x x x x x x x x x
```

The measurement-update for the estimated state vector \(X\) is
\[
\hat{X}_{j|i} = \hat{X}_{j|i-1} - K_i[C\hat{X}_{j|i-1} - Y_i]
\]
whilst the time-update for X is

$$\hat{X}_{i+1|i} = A\hat{X}_{i|i} + D_i U_i$$

where $D_i U_i$ represents any deterministic control used. The relationship between the Kalman gain matrix K_i and G_i is

$$AK_i = G_i \left(H_i^{1/2} \right)$$

The function returns the product of the matrices A and K_i, represented as AK_i, and the state covariance matrix $P_{i|i-1}$ factorised as $P_{i|i-1} = S_i S_i^T$ (see the Introduction to Chapter g13 for more information concerning the covariance filter).

4. Parameters

n

Input: The actual state dimension, n, i.e., the order of the matrices S_i and A.

Constraint: $n \geq 1$.

m

Input: The actual input dimension, m, i.e., the order of the matrix $Q_i^{1/2}$.

Constraint: $m \geq 1$.

p

Input: The actual output dimension, p, i.e., the order of the matrix $R_i^{1/2}$.

Constraint: $p \geq 1$.

$s[n][tds]$

Input: The leading n by n lower triangular part of this array must contain S_i, the left Cholesky factor of the state covariance matrix $P_{i|i-1}$.

Output: The leading n by n lower triangular part of this array contains S_{i+1}, the left Cholesky factor of the state covariance matrix $P_{i|i}$.

tds

Input: The trailing dimension of array s as declared in the calling program.

Constraint: $tds \geq n$.

$a[n][tda]$

Input: The leading n by n part of this array must contain the lower observer Hessenberg matrix UAU^T. Where A is the state transition matrix of the discrete system and U is the unitary transformation generated by the function nag_trans_hessenberg_observer (g13ewc).

tda

Input: The trailing dimension of array a as declared in the calling program.

Constraint: $tda \geq n$.

$b[n][tdb]$

Input: If the array argument q (below) has been defined then the leading n by m part of this array must contain the matrix UB, otherwise (if q is the null pointer (double *)0) then the leading n by m part of the array must contain the matrix $UBQ_i^{1/2}$. B is the input weight matrix, Q_i is the noise covariance matrix and U is the same unitary transformation used for defining array arguments a and c.
Input: The trailing dimension of array b as declared in the calling program.
Constraint: $tdb \geq m$.

$q[m][tdq]$
Input: If the noise covariance matrix is to be supplied separately from the input weight matrix then the leading m by m lower triangular part of this array must contain $Q_i^{1/2}$, the left Cholesky factor process noise covariance matrix. If the noise covariance matrix is to be input with the weight matrix as $BQ_i^{1/2}$ then the array q must be set to the null pointer, i.e., (double *)0.

Input: The trailing dimension of array q as declared in the calling program.
Constraint: $tdq \geq m$ if q is defined.

c[p][tdc]$
Input: The leading p by n part of this array must contain the lower observer Hessenberg matrix CU^T. Where C is the the output weight matrix of the discrete system and U is the unitary transformation matrix generated by the function nag_trans_hessenberg_observer (g13ewc).

Input: The trailing dimension of array c as declared in the calling program.
Constraint: $tdc \geq n$.

$r[p][tdr]$
Input: The leading p by p lower triangular part of this array must contain $R_i^{1/2}$, the left Cholesky factor of the measurement noise covariance matrix.

Input: The trailing dimension of array r as declared in the calling program.
Constraint: $tdr \geq p$.

$k[n][tdk]$
Output: If k is defined, then the leading n by p part of this array contains the AK_i, the product of the Kalman filter gain matrix K_i with the state transition matrix A. If this is not required then the array k must be set to the null pointer, i.e., (double *)0.

Input: The trailing dimension of array k as declared in the calling program.
Constraint: $tdk \geq p$ if k is defined.

$h[p][tdh]$
Output: If k is defined, then the leading p by p lower triangular part of this array contains $H_i^{1/2}$. If k has not been defined then array h is not referenced and may be set to the null pointer i.e., (double *)0.

Input: The trailing dimension of array h as declared in the calling program.
Constraint: $tdh \geq p$ if k and h are defined.
tol

Input: If k is defined, then tol is used to test for near singularity of the matrix $H_i^{1/2}$. If the user sets tol to be less than $p^2\epsilon$ then the tolerance is taken as $p^2\epsilon$, where ϵ is the machine precision. Otherwise, tol need not be set by the user.

fail

The NAG error parameter, see the Essential Introduction to the NAG C Library.

5. Error Indications and Warnings

NE_INT_ARG_LT

On entry, n must not be less than 1: n = ⟨value⟩.
On entry, m must not be less than 1: m = ⟨value⟩.
On entry, p must not be less than 1: p = ⟨value⟩.

NE_2_INT_ARG_LT

On entry tds = ⟨value⟩ while n = ⟨value⟩.
These parameters must satisfy tds ≥ n.
On entry tda = ⟨value⟩ while n = ⟨value⟩.
These parameters must satisfy tda ≥ n.
On entry tdb = ⟨value⟩ while m = ⟨value⟩.
These parameters must satisfy tdb ≥ n.
On entry tdc = ⟨value⟩ while n = ⟨value⟩.
These parameters must satisfy tdc ≥ n.
On entry tdr = ⟨value⟩ while p = ⟨value⟩.
These parameters must satisfy tdr ≥ p.
On entry tdq = ⟨value⟩ while m = ⟨value⟩.
These parameters must satisfy tdq ≥ m.
On entry tdk = ⟨value⟩ while p = ⟨value⟩.
These parameters must satisfy tdk ≥ p.
On entry tdh = ⟨value⟩ while p = ⟨value⟩.
These parameters must satisfy tdh ≥ p.

NE_MAT_SINGULAR

The matrix sqrt(H) is singular.

NE_NULL_ARRAY

Array h has null address.

NE_ALLOC_FAIL

Memory allocation failed.

6. Further Comments

The algorithm requires $\frac{1}{6}n^3 + n^2(\frac{3}{2}p + m) + 2np^2 + \frac{2}{3}p^3$ operations and is backward stable (see Verhaegen et al).

6.1. Accuracy

The use of the square root algorithm improves the stability of the computations.
6.2. References

7. See Also

nag_kalman_sqrt_filt_cov_var (g13eac)
nag_trans_hessenberg_observer (g13ewc)