
QuickAnimationTM

Version 8.0

User’s Guide

How to Contact SoftIntegration

Mail SoftIntegration, Inc.

216 F Street, #68

Davis, CA 95616

Phone + 1 530 297 7398

Fax + 1 530 297 7392

Web http://www.softintegration.com

Email info@softintegration.com

Copyright c©2004-2016 by SoftIntegration, Inc. All rights reserved.

November, 2016

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form

or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written

permission of the copyright holder.

SoftIntegration, Inc. is the holder of the copyright of QuickAnimationTM described in this document.

SoftIntegration, Inc. makes no representations, expressed or implied, with respect to this docu-

mentation, or the software it describes, including without limitations, any implied warranty mer-

chantability or fitness for a particular purpose, all of which are expressly disclaimed. Users should

be aware that included in the terms and conditions under which SoftIntegration is willing to license

QuickAnimationTM as a provision that SoftIntegration, and their distribution licensees, distributors

and dealers shall in no event be liable for any indirect, incidental or consequential damages in connec-

tion with, or arising out of, the furnishing, performance, or use of QuickAnimationTM, and that lia-

bility for direct damages shall be limited to the amount of purchase price paid for QuickAnimationTM.

Ch, SoftIntegration, One Language for All, and QuickAnimation are either registered trademarks or trade-

marks of SoftIntegration, Inc. in the United States and/or other countries. Microsoft, MS-DOS, Windows,

Windows 95, Windows 98, Windows Me, Windows NT, Windows 2000, and Windows XP are trademarks

of Microsoft Corporation. Solaris and Sun are trademarks of Sun Microsystems, Inc. Unix is a trademark

of the Open Group. HP-UX is either a registered trademark or a trademark of Hewlett-Packard Co. Linux

is a trademark of Linus Torvalds. All other trademarks belong to their respective holders.

ii

Table of Contents

1 QuickAnimation for Display and Animation of Objects 1

1.1 Introduction . 1

1.2 User Interface for QuickAnimationTM . 2

1.3 Input Data Format . 2

1.3.1 General Drawing Primitives . 3

1.3.2 Processing qnm Files . 7

1.3.3 Writing Programs for Quick Animation . 7

1.3.4 Mechanical Drawing Primitives . 10

1.4 Examples Using QuickAnimationTM . 13

1.4.1 Example 1: Data Format . 13

1.4.2 Example 2: Display Positions of Damped Free Vibrations 15

1.4.3 Example 3: Animation of Damped Free Vibrations 20

2 Web-Based Display and Animation of Objects 26

2.0.1 Writing CGI Script Files . 26

2.0.2 Configuration and Setup of Web Servers . 26

Index 27

iii

Chapter 1

QuickAnimation for Display and Animation

of Objects

1.1 Introduction

Figure 1.1: QuickAnimation window showing the positions of three vibration systems.

QuickAnimationTM is a program for quick animation and display of various objects, based on specified

x-y coordinate data. Like other SoftIntegration products, simplicity and easy to use is the key for this utility

program. QuickAnimationTM is especially suitable for animation of two-dimensional mechanical systems.

For example, the QuickAnimationTM window shown in Figure 1.1 displays a menu bar and overdamped,

critical damped, and underdamped vibration systems. The displayed objects are drawn in the largest area of

the window with a title above it. The details on how to use the QuickAnimationTM program of qanimate

for animation are described in this chapter.

1

1.2. USER INTERFACE FOR QUICKANIMATIONTM

CHAPTER 1. QUICKANIMATION FOR DISPLAY AND ANIMATION OF OBJECTS

1.2 User Interface for QuickAnimationTM

A QuickAnimationTM data file for objects typically has a file extension .qnm. The data file can be invoked

by the QuickAnimationTM command qanimate as follows:

qanimate datafile.qnm

to launch the QuickAnimationTM window, as shown in Figure 1.1.

The menu bar in the QuickAnimation window contains a series of menus which manipulate the animated

system. The File menu allows one to quit the program. The Next and Prev buttons control the frame

of an animation, and the All button displays all frames at once. The Fast and Slow buttons change

the speed of animation. The Go and Stop buttons start and stop animation, respectively. The system can

move in either direction by pressing the Prev button for one direction and the Next button for the opposite

direction. When the Go button is pressed, the system will move in the direction previously assigned by the

Prev or Next button.

1.3 Input Data Format

The typical format for a QuickAnimation data file is displayed in Figure 1.2. It is specified with the following

typographical notation:

• Typewriter text specifies actual keywords.

• Emphasized text is specified by the user.

• Text between square brackets ‘[]’ are optional.

• The line character ‘|’ specifies an “OR” condition.

The character ‘#’ on the first line delimits a comment. QuickAnimation will ignore anything on that line

following the ‘#’ character. The title of the mechanical system is specified by the title keyword fol-

lowed by the title string delimited by the double quotation character, ‘"’. Keyword fixture allows the

following lines to define the fixed objects. The primitives are commands used to define general and

mechanical components of the displayed or animated system. The animate begins the inputting of of data

for animation. Each line following keyword animate represents one frame of the animation, as indicated

by the superscript on primitive. The option restart specifies that when the animation is finished, it

starts again from the beginning. The option reverse specifies that when the animation is finished, it starts

the animatin backwards from the last frame till the first frame. The primitives following the keyword

stopped will be displayed only when animation is stopped. A frame consists of a data set that can con-

tain multiple primitives. The continuation character ’\’ can be used to span primitives in a data set over

multiple lines. An animation with n number of frames requires n number of data sets.

2

1.3. INPUT DATA FORMAT
CHAPTER 1. QUICKANIMATION FOR DISPLAY AND ANIMATION OF OBJECTS

comment

title "title string"

fixture

primitives

animate [restart | reverse]

primitives1 [stopped primitives1]

primitives2 [stopped primitives2]

.

.

.

primitivesn [stopped primitivesn]

Figure 1.2: QuickAnimation data format.

1.3.1 General Drawing Primitives

Figure 1.3 shows the various general drawing primitives available for QuickAnimation. These primitives

allow for the drawing of an arc, line, segment, circle, polygon, and rectangle as well as the insertion of text

into a QuickAnimation program. The syntax for drawing such primitives are displayed in Figure 1.4. As

an example, consider the sytax for drawing a line. One may specify a line by typing line followed by

the x- and y-coordinates of the starting and ending points of the line (i.e. line 0 0 2 3 draws a line

from the origin to point (2,3) in the Cartesian coordinate system). Multiple lines may be linked together by

adding more coordinate points after the line statement. Similarly, a circle may be drawn by specifying

its center point and radius according to the syntax in Figure 1.4. The various options available for each

general drawing primitives are displayed in Figure 1.5, and an example of color and font options is listed in

Figure 1.6.

3

1.3. INPUT DATA FORMAT
CHAPTER 1. QUICKANIMATION FOR DISPLAY AND ANIMATION OF OBJECTS

2
(x , y)

2

Segment

1
(x , y)

1

nn
(x , y)

2
(x , y)

2

Line

(x, y) string

Text

(x, y)radius

Circle

Polygon

(x, y)

(x, y)

height

angle

width

1
(x , y)

1

2
(x , y)

2

nn
(x , y)

1
(x , y)

1

Arc

width

angle1

angle2

height

Rectangle

Figure 1.3: Graphical representation of general drawing primitives

line x1 y1 x2 y2 [. . . xn yn]
arc x y width height angle1 angle2

segment x1 y1 x2 y2
rectangle x y width height [angle angle]

polygon x1 y1 x2 y2 x3 y3 . . . xn yn
text x y string

circle x y radius

dot x y

Figure 1.4: Syntax for general drawing primitives

4

1.3. INPUT DATA FORMAT
CHAPTER 1. QUICKANIMATION FOR DISPLAY AND ANIMATION OF OBJECTS

line

segment . . .
[pen color]

[linewidth pixelwidth]

[linestyle solid |

dashed [length pixellength] |

dotted [gap pixelgap]]

[capstyle butt | round | projecting]

[joinstyle miter | round | bevel]

[depth depth]

arc

circle

polygon

rectangle . . .
[pen color]

[fill color [intensity percent]

[pattern number]]

[linewidth pixelwidth]

[linestyle solid |

dashed [length pixellength] |

dotted [gap pixelgap]]

[capstyle butt | round | projecting]

[joinstyle miter | round | bevel]

[depth depth]

text . . .
[pen color]

[depth depth]

[font fontname]

dot . . .
[pen color]

[depth depth]

Figure 1.5: Options for general drawing primitives

... color { red | blue | yellow | white | black | grey90 ... }

... font { fixed | 6x13 | 6x13bold | lucidasanstypewriter-12 ...

}

Figure 1.6: Sample color and font options

Colors and fonts are specified by the X Window System in Unix and Windows.

The valid color names and their corresponding GRB values are listed below.

Color Name Hexadecimal R G B

values

white #ffffff = 255 255 255

black #000000 = 0 0 0

gray0 #000000 = 0 0 0

5

1.3. INPUT DATA FORMAT
CHAPTER 1. QUICKANIMATION FOR DISPLAY AND ANIMATION OF OBJECTS

grey0 #000000 = 0 0 0

gray10 #1a1a1a = 26 26 26

grey10 #1a1a1a = 26 26 26

gray20 #333333 = 51 51 51

grey20 #333333 = 51 51 51

gray30 #4d4d4d = 77 77 77

grey30 #4d4d4d = 77 77 77

gray40 #666666 = 102 102 102

grey40 #666666 = 102 102 102

gray50 #7f7f7f = 127 127 127

grey50 #7f7f7f = 127 127 127

gray60 #999999 = 153 153 153

grey60 #999999 = 153 153 153

gray70 #b3b3b3 = 179 179 179

grey70 #b3b3b3 = 179 179 179

gray80 #cccccc = 204 204 204

grey80 #cccccc = 204 204 204

gray90 #e5e5e5 = 229 229 229

grey90 #e5e5e5 = 229 229 229

gray100 #ffffff = 255 255 255

grey100 #ffffff = 255 255 255

gray #bebebe = 190 190 190

grey #bebebe = 190 190 190

light-gray #d3d3d3 = 211 211 211

light-grey #d3d3d3 = 211 211 211

dark-gray #a9a9a9 = 169 169 169

dark-grey #a9a9a9 = 169 169 169

red #ff0000 = 255 0 0

light-red #f03232 = 240 50 50

dark-red #8b0000 = 139 0 0

yellow #ffff00 = 255 255 0

light-yellow #ffffe0 = 255 255 224

dark-yellow #c8c800 = 200 200 0

green #00ff00 = 0 255 0

light-green #90ee90 = 144 238 144

dark-green #006400 = 0 100 0

spring-green #00ff7f = 0 255 127

forest-green #228b22 = 34 139 34

sea-green #2e8b57 = 46 139 87

blue #0000ff = 0 0 255

light-blue #add8e6 = 173 216 230

dark-blue #00008b = 0 0 139

midnight-blue #191970 = 25 25 112

navy #000080 = 0 0 128

medium-blue #0000cd = 0 0 205

royalblue #4169e1 = 65 105 225

skyblue #87ceeb = 135 206 235

cyan #00ffff = 0 255 255

6

1.3. INPUT DATA FORMAT
CHAPTER 1. QUICKANIMATION FOR DISPLAY AND ANIMATION OF OBJECTS

light-cyan #e0ffff = 224 255 255

dark-cyan #008b8b = 0 139 139

magenta #ff00ff = 255 0 255

light-magenta #f055f0 = 240 85 240

dark-magenta #8b008b = 139 0 139

turquoise #40e0d0 = 64 224 208

light-turquoise #afeeee = 175 238 238

dark-turquoise #00ced1 = 0 206 209

pink #ffc0cb = 255 192 203

light-pink #ffb6c1 = 255 182 193

dark-pink #ff1493 = 255 20 147

coral #ff7f50 = 255 127 80

light-coral #f08080 = 240 128 128

orange-red #ff4500 = 255 69 0

salmon #fa8072 = 250 128 114

light-salmon #ffa07a = 255 160 122

dark-salmon #e9967a = 233 150 122

aquamarine #7fffd4 = 127 255 212

khaki #f0e68c = 240 230 140

dark-khaki #bdb76b = 189 183 107

goldenrod #daa520 = 218 165 32

light-goldenrod #eedd82 = 238 221 130

dark-goldenrod #b8860b = 184 134 11

gold #ffd700 = 255 215 0

beige #f5f5dc = 245 245 220

brown #a52a2a = 165 42 42

orange #ffa500 = 255 165 0

dark-orange #ff8c00 = 255 140 0

violet #ee82ee = 238 130 238

dark-violet #9400d3 = 148 0 211

plum #dda0dd = 221 160 221

purple #a020f0 = 160 32 240

1.3.2 Processing qnm Files

A QuickAnimation file with the file extension .qnm can be edited in ChIDE with syntqax highlighting,

as shown in Figure 1.7 for the QuickAnimation file circles.qnm. The animation for circles.qnm

can be created by clicking the command Animate->qanimate (Animate a qnm file) or the

function key F10, as shown in Figure 1.7. Figure 1.8 shows all frames for the animation.

The QuickAnimation file circles.qnm can also be processed by the command

qanimate circles.qnm

where the command qanimate is available in Ch.

1.3.3 Writing Programs for Quick Animation

A program can be written to generate the standard output in the QuickAnimation format, using the standard

C functions such as printf(). The standard output can be sent to the QuickAnimation program qanimate di-

rectly in ChIDE by clicking the command Animate->Output to qanimate or the function key F11,

7

1.3. INPUT DATA FORMAT
CHAPTER 1. QUICKANIMATION FOR DISPLAY AND ANIMATION OF OBJECTS

Figure 1.7: Executing a QuickAnimation file circles.qnm.

Figure 1.8: The output from executing the QuickAnimation file circles.qnm in Figure 1.7.

8

1.3. INPUT DATA FORMAT
CHAPTER 1. QUICKANIMATION FOR DISPLAY AND ANIMATION OF OBJECTS

Figure 1.9: Executing a program with the standard output (stdout) sent to QuickAnimation.

as shown in Figure 1.9 for running the program CHHOME/demos/qanimate/smileyfaceanim.c.

Figure 1.10 shows a snapshot of the generated animation.

The animation can also be created by typing the following commands in a Ch command shell.

smileyfaceanim.c | qanimate

or

smileyfaceanim.c > tmp1.qnm

qanimate tmp1.qnm

9

1.3. INPUT DATA FORMAT
CHAPTER 1. QUICKANIMATION FOR DISPLAY AND ANIMATION OF OBJECTS

Figure 1.10: The output from executing the program smileyfaceanim.c in Figure 1.9.

1.3.4 Mechanical Drawing Primitives

The mechanical drawing primitives were built into QuickAnimation for ease of creating typical mechanical

components, such as the springs and joints, of a mechanical system. The mechanical drawing primitives

available in QuickAnimation are derived from the general drawing primitives. For example, a link is a

combination of two circles connected by a line. All the available mechanical drawing primitives are shown

in Fig. 1.11. These primitives are the primary tools used for creating animations of mechanical systems.

10

1.3. INPUT DATA FORMAT
CHAPTER 1. QUICKANIMATION FOR DISPLAY AND ANIMATION OF OBJECTS

offset

2
(x , y)

2

1
(x , y)

1

2
(x , y)

2

1
(x , y)

1

1

Slider

(x, y)

Point

2

angle

(x, y)

angle

(x, y)

(x , y)
2

1
(x , y)

Spring

Link
Joint

(x, y)

Ground Pin

Ground

Figure 1.11: Graphical representation of mechanical drawing primitives

Point and Joint

The point primitive is basically circle with a filled-in center. It is usually used to emphasize a point on a

mechanical system. The general syntax for a point is

point x1 y1 [x2 y2 ... xn yn] [trace],

where x1y1...xnyn specify the coordinate(s) of the joint(s), trace is an optional parameter used to specify

whether the point is to be traced during animation. For example, to create a point at coordinate (1,3) with a

trace the following command would be required:

point 1 3 trace.

Primitive joint is very similar to point. It is syntactically the same as the point primitive, but

is comprised of a circle that is not filled-in. The joint represents a connection between two links or other

mechanical components.

Link

As previously mentioned, the link primitive is a mechanical component formed by two circle primitives

and a line primitive. This primitive is normally used for generating animations of mechanical linkages such

as fourbar mechanisms. The general syntax for a link is given by the following:

link x1 x2 x2 y2 [... xn yn].

The coordinates of the endpoints of the first link is specified by (x1,y1) and (x2,y2). Addition links may

11

1.3. INPUT DATA FORMAT
CHAPTER 1. QUICKANIMATION FOR DISPLAY AND ANIMATION OF OBJECTS

be attached to the last link by indicating the coordinates of the links’ other endpoints. A typical example of

creating two links adjoined at a common endpoint would be

link 1 1 1 4 4 4

In this example, the endpoints of the first link are at coordinates (1,1) and (1,4). The second link is then

attached to the first link at (1,4), and its other endpoint is located at (4,4). Note that the extra space between

the endpoint coordinates are ignored during execution of the QuickAnimation program. They are present in

the example to help distinguish the endpoints.

Ground

The ground primitive represents a reference area of the animation. It is stationary and fixed to its location.

The syntax for ground is

ground x1 y1 x2 y2 [offset pixeloffset]

[ticks forward | backward]

For option offset, pixeloffset specifies the distance that the ground should be placed away for the x-

and y-coordinates of the ground. Additionally, if the ticks option is used, and its value is forward, then

the ground is specified as going from (x1,y1) to (x2,y2). Likewise, the opposite is true if the value of ticks

is backward. The default value for option ticks is forward. For example,

ground 0 0 10 0 offset 2

will produce a ground section from x=0 to x=10 and two units below the line, y=0.

Ground Pin

In order to directly connect a mechanical system to ground, the groundpin primitive is used to specify

the desired connection. The syntax for this primitive is given below as

groundpin x y [angle angle]

Coordinate (x,y) is the center point of the ground pin, and the optional argument angle angle describes

the angular offset, in radians, relative to a horizontal position. In order to create a ground pin at the origin

with a 45◦ rotational offset, the following statement should be declared:

groundpin 0 0 angle 45

Slider

The slider primitive is generated from the rectangle drawing primitive. It represents a block member of

a mechanical system that is only capable of translation displacement. Similar to the ground pin, the slider

can have an angular displacement that would allow it to translate on a sloped surface. Its syntax is defined

as follow:

slider x y [angle angle]

12

1.4. EXAMPLES USING QUICKANIMATIONTM

CHAPTER 1. QUICKANIMATION FOR DISPLAY AND ANIMATION OF OBJECTS

As an example, consider a crank-slider mechanism that requires the slider to slide on a sloped surface,

located at (3,4) that is about 30◦ relative to the ground. The slider portion of the mechanism can be created

with the following statement:

slider 3 4 angle 30

Spring

The spring is a typical component of many mechanical systems. The availability of a spring primitive in

QuickAnimation greatly increases the number of mechanical systems that can be modeled and animated. Its

syntax is given as

spring x1 y1 x2 y2,

where coordinates (x1,y1) and (x2,y2) specifies the endpoints of the spring. To create a spring from (1,1) to

(3,5), the following should be entered in the QuickAnimation data file:

spring 1 1 3 5

1.4 Examples Using QuickAnimationTM

The source code for these examples are distributed along with Ch. They can be found in the directory

CHHOME/demos/qanimate, such as C:/Ch/demos/qanimate in Windows and /usr/local/ch/demos/qanimate

in Unix. Additional examples including the source code can be found at

http://www.softintegration.com/docs/ch/qanimate/.

1.4.1 Example 1: Data Format

The data file in Figure 1.12 illustrates how general and mechanical primitives are specified in a Quick-

Animation file. Figure 1.13 shows the display when this data file is processed by the program qanimate.

13

1.4. EXAMPLES USING QUICKANIMATIONTM

CHAPTER 1. QUICKANIMATION FOR DISPLAY AND ANIMATION OF OBJECTS

File: sample.qnm (this is a comment)

title "This is a Title"

fixture

#no fixture

animate

low level primitives:

line 0 0 1 1.5 2 2 pen red \

line 3 3 4 4

line 5 5 12 5 linestyle dashed length 2 pen green linewidth 1

line 5 6 12 6 linestyle dashed length 5 pen green linewidth 1

line 5 7 12 7 linestyle dotted gap 1 pen red linewidth 2

line 5 8 12 8 linestyle dotted gap 5 pen red linewidth 2

arc 11 11 4 4 0 270 fill grey90 linewidth 5

arc 12 12 10 11 0 90 13 13 5 5 0 360 linewidth 2 pen blue

segment 14 14 15 15 16 16 17 17 pen red

#color of text cannot be changed in Windows for now

text 18 5 string1 pen rgb:ffff/ffff/0

text 18 7 "This is a string2" pen red

text 18 9 "This is a string3" \

font -*-lucidatypewriter-medium-*-*-*-12-*-*-*-*-*-*-*
circle 22 16 2 \

stopped line 14 17 17 20 text 17.2 20 "center of circle"

rectangle 15 18 1 1 pen red fill grey

rectangle 17 20 2 1 angle 30

higher linkage primitives

joint 18 18

point 19 19

link 20 20 21 21

groundpin 22 22 25 25 angle 30

link 22 22 25 25

polygon 4 10 5 10 6 13 3.5 14 fill green

spring 10 1 15 1

ground 17 1.0 19 2.0

The traced trajectory shown on the upper left

point 0 20 trace

point 3 23 trace

point 6 25 trace

point 10 20 trace

Figure 1.12: A sample data file sample.qnm.

14

1.4. EXAMPLES USING QUICKANIMATIONTM

CHAPTER 1. QUICKANIMATION FOR DISPLAY AND ANIMATION OF OBJECTS

Figure 1.13: The QuickAnimation display based on the sample data file sample.qnm.

1.4.2 Example 2: Display Positions of Damped Free Vibrations

The QuickAnimationTM data file in Figure 1.14 can be used to display the vibration system shown in

Figure 1.1. The first line starting with # is a comment line. Next, the title of the animation is set. Then, the

fixtures are specified. Th first ground pin and joint are located in (0, 6) by the specification below.

groundpin 0 6 angle 180 joint 0 6

Th second one is located in (4, 6). Th third one is located in (8, 6). Three text strings for overdamped,

critical damped, and underdamped are located next to the ground pins. Because the drawing area

is calculated automatically based on the data for primitives without considering the text string width, the

specification

dot 11 6 pen white

allows the text string underdamped displayed completely. The specification

rectangle -0.5 -0.818212 1 1 fill red \

spring 0 6 0 0.181788 \

draws the rectangle and spring for the overdamped vibration system. The next two continuation lines draw

the rectangle and spring for the critical damped vibration system. The last two lines are for the underdamped

vibration system. To display as fixed objects, these primitives could have been specified in multiple lines

without continuation symbols.

15

1.4. EXAMPLES USING QUICKANIMATIONTM

CHAPTER 1. QUICKANIMATION FOR DISPLAY AND ANIMATION OF OBJECTS

qanimate data for animation of vibration systems

title "Positions of damped free vibration"

fixture

groundpin 0 6 angle 180 joint 0 6

text 0.5 6 "overdamped"

groundpin 4 6 angle 180 joint 4 6

text 4.5 6 "critical damped"

groundpin 8 6 angle 180 joint 8 6

text 8.5 6 "underdamped"

dot 11 6 pen white

rectangle -0.5 -0.818212 1 1 fill red \

spring 0 6 0 0.181788 \

rectangle 3.5 -1.049575 1 1 fill green \

spring 4 6 4 -0.049575 \

rectangle 7.5 0.412908 1 1 fill blue \

spring 8 6 8 1.412908

Figure 1.14: The QuickAnimationTM file for vibration systems shown in Figure 1.1.

-3

-2

-1

0

1

2

3

4

5

0 2 4 6 8 10

am
pl

itu
de

time (second)

overdamped
critically damped

underdamped

Figure 1.15: Three damped free vibrations.

16

1.4. EXAMPLES USING QUICKANIMATIONTM

CHAPTER 1. QUICKANIMATION FOR DISPLAY AND ANIMATION OF OBJECTS

/**

* File: vibration.cpp

* Display the positions of damped free vibrations of

* overdamped, critical damped, underdamped systems.

* Note: The details about this damped free vibration can be found in

* an exercise in Chapter 6 Functions in the book

* "C for Engineers and Scientists: An Interpretive Approach"

* by Harry H. Cheng, published by McGraw-Hill, 2009,

* ISBN: 0073376051, ISBN-13: 978-0073376059.

**/

#include <stdio.h>

#include <math.h>

#include <chplot.h>

/* The initial position of the vibration is 4.

The initial velocity of the vibration is 0 */

double overdamped(double t) {

return 4.12*exp(-1.57*t) - 0.12*exp(-54.2*t);

}

double criticaldamped(double t) {

return 4*(1+6*t)*exp(-6*t);

}

double underdamped(double t) {

return 4.06*exp(-0.5*t)*sin(3*t+1.4);

}

int main() {

double t0, tf;

int num = 100; // number of points for plotting

CPlot plot;

t0 = 0;

tf = 10;

plot.title("Damped Free Vibration");

plot.label(PLOT_AXIS_X, "time (second)");

plot.label(PLOT_AXIS_Y, "x");

plot.func2D(t0, tf, num, overdamped);

plot.legend("overdamped", 0);

plot.func2D(t0, tf, num, criticaldamped);

plot.legend("critically damped", 1);

plot.func2D(t0, tf, num, underdamped);

plot.legend("underdamped", 2);

plot.plotting();

return 0;

}

Program 1: Program for creating displacement for damped vibration shown in Figure 1.15.

17

1.4. EXAMPLES USING QUICKANIMATIONTM

CHAPTER 1. QUICKANIMATION FOR DISPLAY AND ANIMATION OF OBJECTS

The three categories of the damped free vibrations, overdamped, critical damped, and underdamped, are

described in Exercises in Chapter 6 Functions in the book C for Engineers and Scientists: An Interpretive

Approach (by Harry H. Cheng, published by McGraw-Hill, 2009). Examples are given as follows.

1. Overdamped.

y1(t) = 4.2e−1.57t − 0.2e−54.2t. (1.1)

In this case, there is no oscillation. The motion decays and x approaches zero for large values of time

as shown in Figure 1.15.

2. Critically damped.

y2(t) = 4(1 − 3t)e−3t. (1.2)

The motion is also nonperiodic for a critically damped system. The mass will also reach the equilib-

rium position rapidly.

3. Underdamped.

y3(t) = 4e−0.5t sin(3t+ π/2). (1.3)

In this case, there is oscillation as shown in Figure 1.15, which is created by Program 1. The solution

is an exponentially decreasing harmonic function. However, because it is a damped motion, the body

will eventually approach the equilibrium position for large values of time t.

Figure 1.1 shows the positions for the above three damped free vibration using Equations (1.1), (1.2),

and (1.3) when time t is 2 seconds. Program 2 can be used to create the QuickAnimationTM data shown in

Figure 1.14.

The displayed vibration systems in Figure 1.1, created by typing the following commands in a Ch

command shell.

position.c | qanimate

or

position.c > tmp1.qnm

qanimate tmp1.qnm

18

1.4. EXAMPLES USING QUICKANIMATIONTM

CHAPTER 1. QUICKANIMATION FOR DISPLAY AND ANIMATION OF OBJECTS

/**

* File: position.c

* Display the position when t is 2 seconds for damped free vibration of

* overdamped, critical damped, underdamped systems.

* Run this program in Ch as follows:

* position.c | qanimate

* or

* positions.c > tmp1.qnm

* qanimate tmp1.qnm

* See CHHOME/docs/qanimate.pdf for detailed description of this program.

* Note: The details about this damped free vibration can be found in

* an exercise in Chapter 6 Functions in the book

* "C for Engineers and Scientists: An Interpretive Approach"

* by Harry H. Cheng, published by McGraw-Hill, 2009,

* ISBN: 0073376051, ISBN-13: 978-0073376059.

**/

#include <stdio.h>

#include <math.h>

/* The amplitude of the vibration is 4 */

double overdamped(double t) {

return 4.2*exp(-1.57*t) - 0.2*exp(-54.2*t);

}

double criticaldamped(double t) {

return 4*(1-3*t)*exp(-3*t);

}

double underdamped(double t) {

return 4*exp(-0.5*t)*sin(3*t+M_PI/2);

}

int main() {

double t, t0, tf; // time

double y1, y2, y3; // displacement

double pin1x = 0, pin1y=7, // pin 1

pin2x = 4, pin2y=7, // pin 2

pin3x = 8, pin3y=7; // pin 3

/* A comment line starting with # */

printf("# qanimate data for positions of vibration systems\n");

/* The title displayed on the animation */

printf("title \"Positions of damped free vibration\"\n");

printf("fixture\n");

/* The primitives following fixture */

printf("groundpin %f %f angle 180 joint %f %f\n", pin1x, pin1y, pin1x, pin1y);

printf("line %f %f %f %f\n", pin1x, pin1y, pin1x, pin1y-1);

printf("text %f %f \"overdamped\"\n", pin1x+0.5, pin1y);

printf("groundpin %f %f angle 180 joint %f %f\n", pin2x, pin2y, pin2x, pin2y);

printf("line %f %f %f %f\n", pin2x, pin2y, pin2x, pin2y-1);

printf("text %f %f \"critical damped\"\n", pin2x+0.5, pin2y);

printf("groundpin %f %f angle 180 joint %f %f\n", pin3x, pin3y, pin3x, pin3y);

printf("line %f %f %f %f\n", pin3x, pin3y, pin3x, pin3y-1);

printf("text %f %f \"underdamped\"\n", pin3x+0.5, pin3y);

printf("dot 11 7 pen white\n"); // to display all text corretly

t = 2; // 2 seconds

y1 = overdamped(t);

y2 = criticaldamped(t);

y3 = underdamped(t);

printf("rectangle %f %f %f %f fill red \\\n",-0.5, y1-1.0, 1.0, 1.0);

printf("spring %f %f %f %f %f \\\n", pin1x, pin1y-1, pin1x, y1);

printf("rectangle %f %f %f %f fill green \\\n", pin2x-0.5, y2-1.0, 1.0, 1.0);

printf("spring %f %f %f %f %f \\\n", pin2x, pin2y-1, pin2x, y2);

printf("rectangle %f %f %f %f fill blue \\\n", pin3x-0.5, y3-1.0, 1.0, 1.0);

printf("spring %f %f %f %f %f \n", pin3x, pin3y-1, pin3x, y3);

return 0;

}

Program 2: Program for creating QuickAnimationTM data file in Figure 1.14.19

1.4. EXAMPLES USING QUICKANIMATIONTM

CHAPTER 1. QUICKANIMATION FOR DISPLAY AND ANIMATION OF OBJECTS

1.4.3 Example 3: Animation of Damped Free Vibrations

One may consider the motion of the above damped free vibration as an elevator approaching a stop. It would

be very uncomfortable to ride if it were underdamped, and very slow to ride if it were overdamped. Critical

damping provides the fastest and smoothest ride. The animation of the motion in QuickAnimationTM

can be created by Program 3.

The result of Program 3 is shown in Figure 1.16. The data sets for creating the animation are generated

by the code in a for loop. Figure 1.17 displays a snapshot of the QuickAnimation animation generated by

the animation data file.

20

1.4. EXAMPLES USING QUICKANIMATIONTM

CHAPTER 1. QUICKANIMATION FOR DISPLAY AND ANIMATION OF OBJECTS

/**

* File: vibration.c

* Animate the damped free vibration of

* overdamped, critical damped, underdamped systems.

* The output is for animation coordinate data.

* (1a) Run this program in ChIDE by clicking Animate on the menu bar

* (1b) Run this program in Ch as follows:

* vibration.c | qanimate

* or

* vibration.c > tmp1.qnm

* qanimate tmp1.qnm

* (2) Click "Go" to view the animation

* See CHHOME/docs/qanimate.pdf for detailed description of this program.

* Note: The details about this damped free vibration can be found in

* an exercise in Chapter 6 Functions in the book

* "C for Engineers and Scientists: An Interpretive Approach"

* by Harry H. Cheng, published by McGraw-Hill, 2009,

* ISBN: 0073376051, ISBN-13: 978-0073376059.

**/

#include <stdio.h>

#include <math.h>

/* The initial position of the vibration is 4.

The initial velocity of the vibration is 0 */

double overdamped(double t) {

return 4.12*exp(-1.57*t) - 0.12*exp(-54.2*t);

}

double criticaldamped(double t) {

return 4*(1+6*t)*exp(-6*t);

}

double underdamped(double t) {

return 4.06*exp(-0.5*t)*sin(3*t+1.4);

}

int main() {

double t, t0, tf; // time

double y1, y2, y3; //displacement

double pin1x = 0, pin1y=7, // pin 1

pin2x = 4, pin2y=7, // pin 2

pin3x = 8, pin3y=7; // pin 3

/* A comment line starting with # */

printf("# qanimate data for animation of vibration systems\n");

/* The title displayed on the animation */

printf("title \"Damped Free Vibration\"\n");

printf("fixture\n");

/* The primitives following fixture */

printf("groundpin %f %f angle 180 joint %f %f\n", pin1x, pin1y, pin1x, pin1y);

printf("line %f %f %f %f\n", pin1x, pin1y, pin1x, pin1y-1);

printf("text %f %f \"overdamped\"\n", pin1x+0.5, pin1y);

printf("groundpin %f %f angle 180 joint %f %f\n", pin2x, pin2y, pin2x, pin2y);

printf("line %f %f %f %f\n", pin2x, pin2y, pin2x, pin2y-1);

printf("text %f %f \"critical damped\"\n", pin2x+0.5, pin2y);

printf("groundpin %f %f angle 180 joint %f %f\n", pin3x, pin3y, pin3x, pin3y);

printf("line %f %f %f %f\n", pin3x, pin3y, pin3x, pin3y-1);

printf("text %f %f \"underdamped\"\n", pin3x+0.5, pin3y);

printf("dot 11 7 pen white\n"); // to display all text corretly

printf("animate restart\n");

t0 = 0;

tf = 10;

for(t = t0; t<tf; t += 0.01) {

y1 = overdamped(t);

y2 = criticaldamped(t);

y3 = underdamped(t);

printf("rectangle %f %f %f %f fill red \\\n",-0.5, y1-1.0, 1.0, 1.0);

printf("spring %f %f %f %f \\\n", pin1x, pin1y-1, pin1x, y1);

printf("rectangle %f %f %f %f fill green \\\n", pin2x-0.5, y2-1.0, 1.0, 1.0);

printf("spring %f %f %f %f \\\n", pin2x, pin2y-1, pin2x, y2);

printf("rectangle %f %f %f %f fill blue \\\n", pin3x-0.5, y3-1.0, 1.0, 1.0);

printf("spring %f %f %f %f \n", pin3x, pin3y-1, pin3x, y3);

}

return 0;

}

Program 3: Program to create the animation for damped free vibrations.

21

1.4. EXAMPLES USING QUICKANIMATIONTM

CHAPTER 1. QUICKANIMATION FOR DISPLAY AND ANIMATION OF OBJECTS

qanimate data for animation of vibration systems

title "Positions of damped free vibration"

fixture

groundpin 0 6 angle 180 joint 0 6

text 0.5 6 "overdamped"

groundpin 4 6 angle 180 joint 4 6

text 4.5 6 "critical damped"

groundpin 8 6 angle 180 joint 8 6

text 8.5 6 "underdamped"

dot 11 6 pen white

rectangle -0.500000 -0.818212 1.000000 1.000000 fill red \

spring 0 6 0 0.181788 \

rectangle 3.500000 -1.049575 1.000000 1.000000 fill green \

spring 4 6 4 -0.049575 \

rectangle 7.500000 0.412908 1.000000 1.000000 fill blue \

spring 8 6 8 1.412908

.

.

.

rectangle -0.500000 -0.999999 1.000000 1.000000 fill red \

spring 0.000000 6.000000 0.000000 0.000001 \

rectangle 3.500000 -1.000000 1.000000 1.000000 fill green \

spring 4.000000 6.000000 4.000000 -0.000000 \

rectangle 7.500000 -0.995843 1.000000 1.000000 fill blue \

spring 8.000000 6.000000 8.000000 0.004157

Figure 1.16: The QuickAnimationTM data generated by Program 3.

Figure 1.17: QuickAnimation window showing a snapshot of damped free vibrations.

22

1.4. EXAMPLES USING QUICKANIMATIONTM

CHAPTER 1. QUICKANIMATION FOR DISPLAY AND ANIMATION OF OBJECTS

Two additional program for animation of the damped free vibration using QuickAnimation animation

are given below. They generate the same animation as that of the program vibration.c shown in Pro-

gram 3. but with special handling of the animation data. Program vibration2.ch outputs the animation

coordinate data to a temporary data file first. The animation data file is then processed by the command

qanimate. After QuickAnimationTM is exited, the temporary animation data file is removed. In this case,

the program vibration2.ch can readily run in ChIDE to create animation.

Program vibration3.c will also produce animation. The animation data are piped directly to the

QuickAnimation program qanimate using the function popen() to automatically generate the animation.

The command qanimate is not invoked as a command inside a Ch program. Execution of the program will

simply generate the desired animation.

Listing of program vibration2.ch

/**

* File: vibration2.ch

* Animate the damped free vibration of

* overdamped, critical damped, underdamped systems.

* The output is for animation coordinate data.

* (1) Run this program in Ch.

* (2) Click "Go" to view the animation

* See CHHOME/docs/qanimate.pdf for detailed description of this program.

* Note: The details about this damped free vibration can be found in

* an exercise in Chapter 6 Functions in the book

* "C for Engineers and Scientists: An Interpretive Approach"

* by Harry H. Cheng, published by McGraw-Hill, 2009,

* ISBN: 0073376051, ISBN-13: 978-0073376059.

**/

#include <stdio.h>

#include <math.h>

/* The initial position of the vibration is 4.

The initial velocity of the vibration is 0 */

double overdamped(double t) {

return 4.12*exp(-1.57*t) - 0.12*exp(-54.2*t);

}

double criticaldamped(double t) {

return 4*(1+6*t)*exp(-6*t);

}

double underdamped(double t) {

return 4.06*exp(-0.5*t)*sin(3*t+1.4);

}

int main() {

double t, t0, tf; // time

double y1, y2, y3; // displacement

double pin1x = 0, pin1y=7, // pin 1

pin2x = 4, pin2y=7, // pin 2

pin3x = 8, pin3y=7; // pin 3

FILE *stream;

char qnmFileName[1024]; // data file name for qanimate

tmpnam(qnmFileName);

stream = fopen(qnmFileName,"w");

if (stream==NULL) {

fprintf(stderr, "Error: cannot open ’%s’\n", qnmFileName);

exit(1);

}

/* The first line of the animation file must start with #qanimate */

fprintf(stream, "# qanimate data for animation of vibration systems\n");

/* The title displayed on the animation */

fprintf(stream, "title \"Damped Free Vibration\"\n");

23

1.4. EXAMPLES USING QUICKANIMATIONTM

CHAPTER 1. QUICKANIMATION FOR DISPLAY AND ANIMATION OF OBJECTS

fprintf(stream, "fixture\n");

/* The primitives following fixture */

fprintf(stream, "groundpin %f %f angle 180 joint %f %f\n", pin1x, pin1y, pin1x, pin1y);

fprintf(stream, "line %f %f %f %f\n", pin1x, pin1y, pin1x, pin1y-1);

fprintf(stream, "text %f %f \"overdamped\"\n", pin1x+0.5, pin1y);

fprintf(stream, "groundpin %f %f angle 180 joint %f %f\n", pin2x, pin2y, pin2x, pin2y);

fprintf(stream, "line %f %f %f %f\n", pin2x, pin2y, pin2x, pin2y-1);

fprintf(stream, "text %f %f \"critical damped\"\n", pin2x+0.5, pin2y);

fprintf(stream, "groundpin %f %f angle 180 joint %f %f\n", pin3x, pin3y, pin3x, pin3y);

fprintf(stream, "line %f %f %f %f\n", pin3x, pin3y, pin3x, pin3y-1);

fprintf(stream, "text %f %f \"underdamped\"\n", pin3x+0.5, pin3y);

fprintf(stream, "dot 11 7 pen white\n"); // to display all text corretly

fprintf(stream, "animate restart\n");

t0 = 0;

tf = 10;

for(t = t0; t<tf; t += 0.01) {

y1 = overdamped(t);

y2 = criticaldamped(t);

y3 = underdamped(t);

fprintf(stream, "rectangle %f %f %f %f fill red \\\n",-0.5, y1-1.0, 1.0, 1.0);

fprintf(stream, "spring %f %f %f %f \\\n", pin1x, pin1y-1, pin1x, y1);

fprintf(stream, "rectangle %f %f %f %f fill green \\\n", pin2x-0.5, y2-1.0, 1.0, 1.0);

fprintf(stream, "spring %f %f %f %f \\\n", pin2x, pin2y-1, pin2x, y2);

fprintf(stream, "rectangle %f %f %f %f fill blue \\\n", pin3x-0.5, y3-1.0, 1.0, 1.0);

fprintf(stream, "spring %f %f %f %f \n", pin3x, pin3y-1, pin3x, y3);

}

fclose(stream);

qanimate $qnmFileName

remove(qnmFileName);

return 0;

}

Listing of program vibration3.c

/**

* File: vibration3.c

* Animate the damped free vibration of

* overdamped, critical damped, underdamped systems.

* The output is for animation coordinate data.

* (1) Run this program in Ch.

* (2) Click "Go" to view the animation

* See CHHOME/docs/qanimate.pdf for detailed description of this program.

* Note: The details about this damped free vibration can be found in

* an exercise in Chapter 6 Functions in the book

* "C for Engineers and Scientists: An Interpretive Approach"

* by Harry H. Cheng, published by McGraw-Hill, 2009,

* ISBN: 0073376051, ISBN-13: 978-0073376059.

**/

#include <stdio.h>

#include <math.h>

/* The initial position of the vibration is 4.

The initial velocity of the vibration is 0 */

double overdamped(double t) {

return 4.12*exp(-1.57*t) - 0.12*exp(-54.2*t);

}

double criticaldamped(double t) {

return 4*(1+6*t)*exp(-6*t);

}

double underdamped(double t) {

return 4.06*exp(-0.5*t)*sin(3*t+1.4);

}

int main() {

double t, t0, tf; // time

24

1.4. EXAMPLES USING QUICKANIMATIONTM

CHAPTER 1. QUICKANIMATION FOR DISPLAY AND ANIMATION OF OBJECTS

double y1, y2, y3; // displacement

double pin1x = 0, pin1y=7, // pin 1

pin2x = 4, pin2y=7, // pin 2

pin3x = 8, pin3y=7; // pin 3

FILE *stream;

stream = popen("qanimate","w"); // open qanimate pipe

if (stream==NULL) {

fprintf(stderr, "Error: popen() failed\n");

exit(1);

}

/* A comment line starting with # */

fprintf(stream, "# qanimate data for animation of vibration systems\n");

/* The title displayed on the animation */

fprintf(stream, "title \"Damped Free Vibration\"\n");

fprintf(stream, "fixture\n");

/* The primitives following fixture */

fprintf(stream, "groundpin %f %f angle 180 joint %f %f\n", pin1x, pin1y, pin1x, pin1y);

fprintf(stream, "line %f %f %f %f\n", pin1x, pin1y, pin1x, pin1y-1);

fprintf(stream, "text %f %f \"overdamped\"\n", pin1x+0.5, pin1y);

fprintf(stream, "groundpin %f %f angle 180 joint %f %f\n", pin2x, pin2y, pin2x, pin2y);

fprintf(stream, "line %f %f %f %f\n", pin2x, pin2y, pin2x, pin2y-1);

fprintf(stream, "text %f %f \"critical damped\"\n", pin2x+0.5, pin2y);

fprintf(stream, "groundpin %f %f angle 180 joint %f %f\n", pin3x, pin3y, pin3x, pin3y);

fprintf(stream, "line %f %f %f %f\n", pin3x, pin3y, pin3x, pin3y-1);

fprintf(stream, "text %f %f \"underdamped\"\n", pin3x+0.5, pin3y);

fprintf(stream, "dot 11 7 pen white\n"); // to display all text corretly

fprintf(stream, "animate restart\n");

t0 = 0;

tf = 10;

for(t = t0; t<tf; t += 0.01) {

y1 = overdamped(t);

y2 = criticaldamped(t);

y3 = underdamped(t);

fprintf(stream, "rectangle %f %f %f %f fill red \\\n",-0.5, y1-1.0, 1.0, 1.0);

fprintf(stream, "spring %f %f %f %f \\\n", pin1x, pin1y-1, pin1x, y1);

fprintf(stream, "rectangle %f %f %f %f fill green \\\n", pin2x-0.5, y2-1.0, 1.0, 1.0);

fprintf(stream, "spring %f %f %f %f \\\n", pin2x, pin2y-1, pin2x, y2);

fprintf(stream, "rectangle %f %f %f %f fill blue \\\n", pin3x-0.5, y3-1.0, 1.0, 1.0);

fprintf(stream, "spring %f %f %f %f \n", pin3x, pin3y-1, pin3x, y3);

}

pclose(stream);

return 0;

}

25

Chapter 2

Web-Based Display and Animation of

Objects

The QuickAnimationTM program can be conveniently used to develop Web-based displayment of objects

and animation.

2.0.1 Writing CGI Script Files

Processing data sent from an HTML document with the <FORM> tag requires a script file, which is located

on the server side. Once data are passed to the server through Common Gateway Interface (CGI) or mech-

anisms, the necessary procedures are performed and the result is returned to the client. Details about CGI

in Ch can be in Ch CGI Toolkit User’s Guide. To use QuickAnimationTM , the content type of the output

form a CGI script need to be specified by the statement

Response.setContentType("application/x-qnm");

which indicates that the output is a QuickAnimationTM application.

2.0.2 Configuration and Setup of Web Servers

In order to run the QuickAnimationTM application from a Netscape Web server in a Unix operating system,

the following line has to be added to the Netscape WWW server configuration file mime.types located in

directory server home dir/https-80 or http/config.

type=application/x-qnm exts=qnm

For the Apache Web server, the line

application/x-qnm qnm

may be added to file server home dir/conf/mime.types. Note that the Web server needs to restart

in order for the changes to be effective.

26

Index

QuickAnimationTM, 1

CGI, 26

CGI Programming, 25

comment, 2

copyright, ii

general drawing primitives, 3

general primitives, 3

mechanical drawing primitives, 10

mechanical primitives, 10

qanimate, 1

27

	QuickAnimation for Display and Animation of Objects
	Introduction
	User Interface for QuickAnimationTM
	Input Data Format
	General Drawing Primitives
	Processing qnm Files
	Writing Programs for Quick Animation
	Mechanical Drawing Primitives

	Examples Using QuickAnimationTM
	Example 1: Data Format
	Example 2: Display Positions of Damped Free Vibrations
	Example 3: Animation of Damped Free Vibrations

	Web-Based Display and Animation of Objects
	Writing CGI Script Files
	Configuration and Setup of Web Servers

	Index

